Characterization of fibrous media transport parameters from multi-compression-ratio measurements of normal incidence sound absorptiona).

IF 2.1 2区 物理与天体物理 Q2 ACOUSTICS
Andrea Santoni, Francesco Pompoli, Cristina Marescotti, Patrizio Fausti
{"title":"Characterization of fibrous media transport parameters from multi-compression-ratio measurements of normal incidence sound absorptiona).","authors":"Andrea Santoni, Francesco Pompoli, Cristina Marescotti, Patrizio Fausti","doi":"10.1121/10.0035847","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a novel approach for estimating the transport parameters that characterize the acoustic behavior of fibrous materials using the Johnson-Champoux-Allard equivalent fluid model. We propose an inversion technique, based on an optimization algorithm, to fit the Johnson-Champoux-Allard model's predictions of normal incidence sound absorption coefficient to multi-compression-ratio experimental data. Experimental measurements using the two-microphone technique within an impedance tube are conducted on fibrous material samples tested at various compression ratios. Optimization is performed using both a non-linear programming solver and a genetic algorithm. Validation of the proposed method shows good agreement with well-established techniques and demonstrates its effectiveness across a range of fibrous materials. A sensitivity analysis emphasizes the importance of selecting appropriate boundaries for the search space in the optimization process. To enhance the robustness of optimization, a two-step iterative procedure is proposed. This straightforward methodology offers a robust and reliable framework for characterizing the transport properties of fibrous materials. Its ease of implementation and accuracy make it a valuable tool for enhancing material design and optimization in acoustic engineering.</p>","PeriodicalId":17168,"journal":{"name":"Journal of the Acoustical Society of America","volume":"157 2","pages":"1185-1201"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Acoustical Society of America","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1121/10.0035847","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel approach for estimating the transport parameters that characterize the acoustic behavior of fibrous materials using the Johnson-Champoux-Allard equivalent fluid model. We propose an inversion technique, based on an optimization algorithm, to fit the Johnson-Champoux-Allard model's predictions of normal incidence sound absorption coefficient to multi-compression-ratio experimental data. Experimental measurements using the two-microphone technique within an impedance tube are conducted on fibrous material samples tested at various compression ratios. Optimization is performed using both a non-linear programming solver and a genetic algorithm. Validation of the proposed method shows good agreement with well-established techniques and demonstrates its effectiveness across a range of fibrous materials. A sensitivity analysis emphasizes the importance of selecting appropriate boundaries for the search space in the optimization process. To enhance the robustness of optimization, a two-step iterative procedure is proposed. This straightforward methodology offers a robust and reliable framework for characterizing the transport properties of fibrous materials. Its ease of implementation and accuracy make it a valuable tool for enhancing material design and optimization in acoustic engineering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
16.70%
发文量
1433
审稿时长
4.7 months
期刊介绍: Since 1929 The Journal of the Acoustical Society of America has been the leading source of theoretical and experimental research results in the broad interdisciplinary study of sound. Subject coverage includes: linear and nonlinear acoustics; aeroacoustics, underwater sound and acoustical oceanography; ultrasonics and quantum acoustics; architectural and structural acoustics and vibration; speech, music and noise; psychology and physiology of hearing; engineering acoustics, transduction; bioacoustics, animal bioacoustics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信