Xiaoxue Han, Leah Ju, Mia Sands, Yunlei Zhao and Joseph Irudayaraj*,
{"title":"Oxygenated Exosome-Based Nanoeyedrop for Mitigating Hypoxia in Corneal Wound Healing: Impact on Healing Properties of Human Corneal Epithelial Cells","authors":"Xiaoxue Han, Leah Ju, Mia Sands, Yunlei Zhao and Joseph Irudayaraj*, ","doi":"10.1021/acsptsci.4c0072410.1021/acsptsci.4c00724","DOIUrl":null,"url":null,"abstract":"<p >The rapid and organized healing of the cornea, while maintaining optical clarity, is essential for patient health and quality of life following corneal injuries. Oxygen plays a critical role in regulating cell migration and proliferation during wound repair, and the application of stem cell-derived exosomes offers potential therapeutic benefits due to their antioxidant and antiscarring properties. In this study, we developed oxygenated exosome-coated hemoglobin nanoparticles (OExo NPs) designed for effective oxygen delivery to enhance corneal re-epithelialization, reduce inflammation, and mitigate scarring. These OExo NPs exhibit a uniform average diameter of 130 nm and demonstrate consistent oxygen release capabilities. In vitro assays using human corneal epithelial cells-transformed (HCE-T) revealed that OExo NPs significantly promote cell proliferation and accelerate migration in scratch wound assays. Fluorescence imaging confirmed the successful internalization of OExo NPs into HCE-T cells and increased intracellular oxygen levels under hypoxic conditions. Gene expression analyses indicated a downregulation of critical wound healing markers, including HIF-1α, VEGF, IL-8, and FAK, suggesting effective alleviation of hypoxia, inhibition of angiogenesis, suppression of inflammation, and reduction of scar formation. These results highlight the potential of OExo NPs as a promising therapeutic approach for topical treatment of corneal wounds.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 2","pages":"602–612 602–612"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid and organized healing of the cornea, while maintaining optical clarity, is essential for patient health and quality of life following corneal injuries. Oxygen plays a critical role in regulating cell migration and proliferation during wound repair, and the application of stem cell-derived exosomes offers potential therapeutic benefits due to their antioxidant and antiscarring properties. In this study, we developed oxygenated exosome-coated hemoglobin nanoparticles (OExo NPs) designed for effective oxygen delivery to enhance corneal re-epithelialization, reduce inflammation, and mitigate scarring. These OExo NPs exhibit a uniform average diameter of 130 nm and demonstrate consistent oxygen release capabilities. In vitro assays using human corneal epithelial cells-transformed (HCE-T) revealed that OExo NPs significantly promote cell proliferation and accelerate migration in scratch wound assays. Fluorescence imaging confirmed the successful internalization of OExo NPs into HCE-T cells and increased intracellular oxygen levels under hypoxic conditions. Gene expression analyses indicated a downregulation of critical wound healing markers, including HIF-1α, VEGF, IL-8, and FAK, suggesting effective alleviation of hypoxia, inhibition of angiogenesis, suppression of inflammation, and reduction of scar formation. These results highlight the potential of OExo NPs as a promising therapeutic approach for topical treatment of corneal wounds.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.