Machine learning for the diagnosis accuracy of bipolar disorder: a systematic review and meta-analysis.

IF 3.2 3区 医学 Q2 PSYCHIATRY
Frontiers in Psychiatry Pub Date : 2025-01-28 eCollection Date: 2024-01-01 DOI:10.3389/fpsyt.2024.1515549
Yi Pan, Pushi Wang, Bowen Xue, Yanbin Liu, Xinhua Shen, Shiliang Wang, Xing Wang
{"title":"Machine learning for the diagnosis accuracy of bipolar disorder: a systematic review and meta-analysis.","authors":"Yi Pan, Pushi Wang, Bowen Xue, Yanbin Liu, Xinhua Shen, Shiliang Wang, Xing Wang","doi":"10.3389/fpsyt.2024.1515549","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diagnosing bipolar disorder poses a challenge in clinical practice and demands a substantial time investment. With the growing utilization of artificial intelligence in mental health, researchers are endeavoring to create AI-based diagnostic models. In this context, some researchers have sought to develop machine learning models for bipolar disorder diagnosis. Nevertheless, the accuracy of these diagnoses remains a subject of controversy. Consequently, we conducted this systematic review to comprehensively assess the diagnostic value of machine learning in the context of bipolar disorder.</p><p><strong>Methods: </strong>We searched PubMed, Embase, Cochrane, and Web of Science, with the search ending on April 1, 2023. QUADAS-2 was applied to assess the quality of the literature included. In addition, we employed a bivariate mixed-effects model for the meta-analysis.</p><p><strong>Results: </strong>18 studies were included, covering 3152 participants, including 1858 cases of bipolar disorder. 28 machine learning models were encompassed. Sensitivity and specificity in discriminating between bipolar disorder and normal individuals were 0.88 (9.5% CI: 0.74~0.95) and 0.89 (95% CI: 0.73~0.96) respectively, and the SROC curve was 0.94(95% CI: 0.92~0.96). The sensitivity and specificity for distinguishing between bipolar disorder and depression were 0.84 (95%CI: 0.80~0.87) and 0.82 (95%CI: 0.75~0.88) respectively. The SROC curve was 0.89 (95%CI: 0.86~0.91).</p><p><strong>Conclusions: </strong>Machine learning methods can be employed for discriminating and diagnosing bipolar disorder. However, in current research, they are predominantly utilized for binary classification tasks, limiting their progress in clinical practice. Therefore, in future studies, we anticipate the development of more multi-class classification tasks to enhance the clinical applicability of these methods.</p><p><strong>Systematic review registration: </strong>https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023427290, identifier CRD42023427290.</p>","PeriodicalId":12605,"journal":{"name":"Frontiers in Psychiatry","volume":"15 ","pages":"1515549"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpsyt.2024.1515549","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diagnosing bipolar disorder poses a challenge in clinical practice and demands a substantial time investment. With the growing utilization of artificial intelligence in mental health, researchers are endeavoring to create AI-based diagnostic models. In this context, some researchers have sought to develop machine learning models for bipolar disorder diagnosis. Nevertheless, the accuracy of these diagnoses remains a subject of controversy. Consequently, we conducted this systematic review to comprehensively assess the diagnostic value of machine learning in the context of bipolar disorder.

Methods: We searched PubMed, Embase, Cochrane, and Web of Science, with the search ending on April 1, 2023. QUADAS-2 was applied to assess the quality of the literature included. In addition, we employed a bivariate mixed-effects model for the meta-analysis.

Results: 18 studies were included, covering 3152 participants, including 1858 cases of bipolar disorder. 28 machine learning models were encompassed. Sensitivity and specificity in discriminating between bipolar disorder and normal individuals were 0.88 (9.5% CI: 0.74~0.95) and 0.89 (95% CI: 0.73~0.96) respectively, and the SROC curve was 0.94(95% CI: 0.92~0.96). The sensitivity and specificity for distinguishing between bipolar disorder and depression were 0.84 (95%CI: 0.80~0.87) and 0.82 (95%CI: 0.75~0.88) respectively. The SROC curve was 0.89 (95%CI: 0.86~0.91).

Conclusions: Machine learning methods can be employed for discriminating and diagnosing bipolar disorder. However, in current research, they are predominantly utilized for binary classification tasks, limiting their progress in clinical practice. Therefore, in future studies, we anticipate the development of more multi-class classification tasks to enhance the clinical applicability of these methods.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023427290, identifier CRD42023427290.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Psychiatry
Frontiers in Psychiatry Medicine-Psychiatry and Mental Health
CiteScore
6.20
自引率
8.50%
发文量
2813
审稿时长
14 weeks
期刊介绍: Frontiers in Psychiatry publishes rigorously peer-reviewed research across a wide spectrum of translational, basic and clinical research. Field Chief Editor Stefan Borgwardt at the University of Basel is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. The journal''s mission is to use translational approaches to improve therapeutic options for mental illness and consequently to improve patient treatment outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信