Metabolomics- and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury.

IF 7 1区 医学 Q1 MEDICINE, GENERAL & INTERNAL
Pengfei Huang, Yanqi Liu, Yue Li, Yu Xin, Chuanchuan Nan, Yinghao Luo, Yating Feng, Nana Jin, Yahui Peng, Dawei Wang, Yang Zhou, Feiyu Luan, Xinran Wang, Xibo Wang, Hongxu Li, Yuxin Zhou, Weiting Zhang, Yuhan Liu, Mengyao Yuan, Yuxin Zhang, Yuchen Song, Yu Xiao, Lifeng Shen, Kaijiang Yu, Mingyan Zhao, Lixin Cheng, Changsong Wang
{"title":"Metabolomics- and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury.","authors":"Pengfei Huang, Yanqi Liu, Yue Li, Yu Xin, Chuanchuan Nan, Yinghao Luo, Yating Feng, Nana Jin, Yahui Peng, Dawei Wang, Yang Zhou, Feiyu Luan, Xinran Wang, Xibo Wang, Hongxu Li, Yuxin Zhou, Weiting Zhang, Yuhan Liu, Mengyao Yuan, Yuxin Zhang, Yuchen Song, Yu Xiao, Lifeng Shen, Kaijiang Yu, Mingyan Zhao, Lixin Cheng, Changsong Wang","doi":"10.1186/s12916-025-03920-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication in patients with sepsis and is associated with high mortality. Therefore, early recognition of SA-AKI is essential for administering supportive treatment and preventing further damage. This study aimed to identify and validate metabolite biomarkers of SA-AKI to assist in early clinical diagnosis.</p><p><strong>Methods: </strong>Untargeted renal proteomic and metabolomic analyses were performed on the renal tissues of LPS-induced SA-AKI and sepsis mice. Glomerular filtration rate (GFR) monitoring technology was used to evaluate real-time renal function in mice. To elucidate the distinctive characteristics of SA-AKI, a multi-omics Spearman correlation network was constructed integrating core metabolites, proteins, and renal function. Subsequently, metabolomics analysis was used to explore the dynamic changes of core metabolites in the serum of SA-AKI mice at 0, 8, and 24 h. Finally, a clinical cohort (28 patients with SA-AKI vs. 28 patients with sepsis) serum quantitative metabolomic analysis was carried out to build a diagnostic model for SA-AKI via logistic regression (LR).</p><p><strong>Results: </strong>Thirteen differential renal metabolites and 112 differential renal proteins were identified through a multi-omics study of SA-AKI mice. Subsequently, a multi-omics correlation network was constructed to highlight five core metabolites, i.e., 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, creatine, myristic acid, and inosine, the early changes of which were then observed via serum time series experiments of SA-AKI mice. The levels of 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, and creatine increased significantly at 24 h, myristic acid increased at 8 h, while inosine decreased at 8 h. Ultimately, based on the identified core metabolites, we recruited 56 patients and constructed a diagnostic model named IC3, using inosine, creatine, and 3-hydroxybutyric acid, to early identify SA-AKI (AUC = 0.90).</p><p><strong>Conclusions: </strong>We proposed a blood metabolite model consisting of inosine, creatine, and 3-hydroxybutyric acid for the early screening of SA-AKI. Future studies will observe the performance of these metabolites in other clinical populations to evaluate their diagnostic role.</p>","PeriodicalId":9188,"journal":{"name":"BMC Medicine","volume":"23 1","pages":"79"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11818193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12916-025-03920-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication in patients with sepsis and is associated with high mortality. Therefore, early recognition of SA-AKI is essential for administering supportive treatment and preventing further damage. This study aimed to identify and validate metabolite biomarkers of SA-AKI to assist in early clinical diagnosis.

Methods: Untargeted renal proteomic and metabolomic analyses were performed on the renal tissues of LPS-induced SA-AKI and sepsis mice. Glomerular filtration rate (GFR) monitoring technology was used to evaluate real-time renal function in mice. To elucidate the distinctive characteristics of SA-AKI, a multi-omics Spearman correlation network was constructed integrating core metabolites, proteins, and renal function. Subsequently, metabolomics analysis was used to explore the dynamic changes of core metabolites in the serum of SA-AKI mice at 0, 8, and 24 h. Finally, a clinical cohort (28 patients with SA-AKI vs. 28 patients with sepsis) serum quantitative metabolomic analysis was carried out to build a diagnostic model for SA-AKI via logistic regression (LR).

Results: Thirteen differential renal metabolites and 112 differential renal proteins were identified through a multi-omics study of SA-AKI mice. Subsequently, a multi-omics correlation network was constructed to highlight five core metabolites, i.e., 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, creatine, myristic acid, and inosine, the early changes of which were then observed via serum time series experiments of SA-AKI mice. The levels of 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, and creatine increased significantly at 24 h, myristic acid increased at 8 h, while inosine decreased at 8 h. Ultimately, based on the identified core metabolites, we recruited 56 patients and constructed a diagnostic model named IC3, using inosine, creatine, and 3-hydroxybutyric acid, to early identify SA-AKI (AUC = 0.90).

Conclusions: We proposed a blood metabolite model consisting of inosine, creatine, and 3-hydroxybutyric acid for the early screening of SA-AKI. Future studies will observe the performance of these metabolites in other clinical populations to evaluate their diagnostic role.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Medicine
BMC Medicine 医学-医学:内科
CiteScore
13.10
自引率
1.10%
发文量
435
审稿时长
4-8 weeks
期刊介绍: BMC Medicine is an open access, transparent peer-reviewed general medical journal. It is the flagship journal of the BMC series and publishes outstanding and influential research in various areas including clinical practice, translational medicine, medical and health advances, public health, global health, policy, and general topics of interest to the biomedical and sociomedical professional communities. In addition to research articles, the journal also publishes stimulating debates, reviews, unique forum articles, and concise tutorials. All articles published in BMC Medicine are included in various databases such as Biological Abstracts, BIOSIS, CAS, Citebase, Current contents, DOAJ, Embase, MEDLINE, PubMed, Science Citation Index Expanded, OAIster, SCImago, Scopus, SOCOLAR, and Zetoc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信