Alteration in Cortical Structure Mediating the Impact of Blood Oxygen-Carrying Capacity on Gross Motor Skills in Infants With Complex Congenital Heart Disease

IF 3.5 2区 医学 Q1 NEUROIMAGING
Xuyun Wen, Pengcheng Xue, Meijiao Zhu, Jingjing Zhong, Wei Yu, Siyu Ma, Yuting Liu, Peng Liu, Bin Jing, Ming Yang, Xuming Mo, Daoqiang Zhang
{"title":"Alteration in Cortical Structure Mediating the Impact of Blood Oxygen-Carrying Capacity on Gross Motor Skills in Infants With Complex Congenital Heart Disease","authors":"Xuyun Wen,&nbsp;Pengcheng Xue,&nbsp;Meijiao Zhu,&nbsp;Jingjing Zhong,&nbsp;Wei Yu,&nbsp;Siyu Ma,&nbsp;Yuting Liu,&nbsp;Peng Liu,&nbsp;Bin Jing,&nbsp;Ming Yang,&nbsp;Xuming Mo,&nbsp;Daoqiang Zhang","doi":"10.1002/hbm.70155","DOIUrl":null,"url":null,"abstract":"<p>Congenital heart disease (CHD) is the most common congenital anomaly, leading to an increased risk of neurodevelopmental abnormalities in many children with CHD. Understanding the neurological mechanisms behind these neurodevelopmental disorders is crucial for implementing early interventions and treatments. In this study, we recruited 83 infants aged 12–26.5 months with complex CHD, along with 86 healthy controls (HCs). We collected multimodal data to explore the abnormal patterns of cerebral cortex development and explored the complex interactions among blood oxygen-carrying capacity, cortical development, and gross motor skills. We found that, compared to healthy infants, those with complex CHD exhibit significant reductions in cortical surface area development, particularly in the default mode network. Most of these developmentally abnormal brain regions are significantly correlated with the blood oxygen-carrying capacity and gross motor skills of infants with CHD. Additionally, we further discovered that the blood oxygen-carrying capacity of infants with CHD can indirectly predict their gross motor skills through cortical structures, with the left middle temporal area and left inferior temporal area showing the greatest mediation effects. This study identified biomarkers for neurodevelopmental disorders and highlighted blood oxygen-carrying capacity as an indicator of motor development risk, offering new insights for the clinical management CHD.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70155","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70155","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Congenital heart disease (CHD) is the most common congenital anomaly, leading to an increased risk of neurodevelopmental abnormalities in many children with CHD. Understanding the neurological mechanisms behind these neurodevelopmental disorders is crucial for implementing early interventions and treatments. In this study, we recruited 83 infants aged 12–26.5 months with complex CHD, along with 86 healthy controls (HCs). We collected multimodal data to explore the abnormal patterns of cerebral cortex development and explored the complex interactions among blood oxygen-carrying capacity, cortical development, and gross motor skills. We found that, compared to healthy infants, those with complex CHD exhibit significant reductions in cortical surface area development, particularly in the default mode network. Most of these developmentally abnormal brain regions are significantly correlated with the blood oxygen-carrying capacity and gross motor skills of infants with CHD. Additionally, we further discovered that the blood oxygen-carrying capacity of infants with CHD can indirectly predict their gross motor skills through cortical structures, with the left middle temporal area and left inferior temporal area showing the greatest mediation effects. This study identified biomarkers for neurodevelopmental disorders and highlighted blood oxygen-carrying capacity as an indicator of motor development risk, offering new insights for the clinical management CHD.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信