Pseudo-HFOs Elimination in iEEG Recordings Using a Robust Residual-Based Dictionary Learning Framework

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Behrang Fazli Besheli;Zhiyi Sha;Amir Hossein Ayyoubi;Chandra Prakash Swamy;Thomas R. Henry;Gregory A. Worrell;Kai J. Miller;Jonathon J. Parker;David P. Darrow;Nuri Firat Ince
{"title":"Pseudo-HFOs Elimination in iEEG Recordings Using a Robust Residual-Based Dictionary Learning Framework","authors":"Behrang Fazli Besheli;Zhiyi Sha;Amir Hossein Ayyoubi;Chandra Prakash Swamy;Thomas R. Henry;Gregory A. Worrell;Kai J. Miller;Jonathon J. Parker;David P. Darrow;Nuri Firat Ince","doi":"10.1109/JBHI.2024.3516613","DOIUrl":null,"url":null,"abstract":"High-frequency oscillations (HFOs) in intracranial EEG (iEEG) recordings are critical biomarkers for localizing the seizure onset zone (SOZ) in patients with focal refractory epilepsy. Despite their clinical significance, HFO analysis is often compromised by high-frequency artifacts that bypass conventional detectors, resulting in false-positive events that dilute the reliability of the HFO pool. To address this challenge, this study aimed to develop an automated method to accurately identify and eliminate false-positive events, ensuring more robust and artifact-free HFO analysis for clinical applications. Using iEEG data from 15 patients with focal epilepsy, we implemented an attention-based cascaded residual dictionary learning framework coupled with a random forest classifier. Events passing an initial amplitude detector underwent a second-stage refinement to remove artifacts and non-neural noise that mimicked HFOs. This was achieved by evaluating event reconstruction quality using a dictionary learned from genuine HFOs. Compared to visual assessments by three human experts, the proposed method demonstrated 92.14% classification accuracy in distinguishing real HFOs from pseudo-HFOs. Additionally, the method improved SOZ localization accuracy in noisy iEEG data by 20% (p=6e-5) and in clean iEEG data by 4% (p=3.3e-3). The learned dictionary effectively captured raw HFO morphology in shallow layers, while deeper layers identified ripple and fast ripple components, all without human supervision. These findings highlight the algorithm's effectiveness in detecting pseudo-HFOs in corrupted iEEG data, thereby enhancing the clinical utility of HFOs as biomarkers for SOZ in epilepsy.","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"29 2","pages":"857-869"},"PeriodicalIF":6.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10794676/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency oscillations (HFOs) in intracranial EEG (iEEG) recordings are critical biomarkers for localizing the seizure onset zone (SOZ) in patients with focal refractory epilepsy. Despite their clinical significance, HFO analysis is often compromised by high-frequency artifacts that bypass conventional detectors, resulting in false-positive events that dilute the reliability of the HFO pool. To address this challenge, this study aimed to develop an automated method to accurately identify and eliminate false-positive events, ensuring more robust and artifact-free HFO analysis for clinical applications. Using iEEG data from 15 patients with focal epilepsy, we implemented an attention-based cascaded residual dictionary learning framework coupled with a random forest classifier. Events passing an initial amplitude detector underwent a second-stage refinement to remove artifacts and non-neural noise that mimicked HFOs. This was achieved by evaluating event reconstruction quality using a dictionary learned from genuine HFOs. Compared to visual assessments by three human experts, the proposed method demonstrated 92.14% classification accuracy in distinguishing real HFOs from pseudo-HFOs. Additionally, the method improved SOZ localization accuracy in noisy iEEG data by 20% (p=6e-5) and in clean iEEG data by 4% (p=3.3e-3). The learned dictionary effectively captured raw HFO morphology in shallow layers, while deeper layers identified ripple and fast ripple components, all without human supervision. These findings highlight the algorithm's effectiveness in detecting pseudo-HFOs in corrupted iEEG data, thereby enhancing the clinical utility of HFOs as biomarkers for SOZ in epilepsy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信