Jan de Witt, Tom Luthe, Johanna Wiechert, Kenneth Jensen, Tino Polen, Astrid Wirtz, Stephan Thies, Julia Frunzke, Benedikt Wynands, Nick Wierckx
{"title":"Upcycling of polyamides through chemical hydrolysis and engineered Pseudomonas putida","authors":"Jan de Witt, Tom Luthe, Johanna Wiechert, Kenneth Jensen, Tino Polen, Astrid Wirtz, Stephan Thies, Julia Frunzke, Benedikt Wynands, Nick Wierckx","doi":"10.1038/s41564-025-01929-5","DOIUrl":null,"url":null,"abstract":"<p>Aliphatic polyamides, or nylons, are widely used in the textile and automotive industry due to their high durability and tensile strength, but recycling rates are below 5%. Chemical recycling of polyamides is possible but typically yields mixtures of monomers and oligomers which hinders downstream purification. Here, <i>Pseudomonas putida</i> KT2440 was engineered to metabolize C<sub>6</sub>-polyamide monomers such as 6-aminohexanoic acid, ε-caprolactam and 1,6-hexamethylenediamine, guided by adaptive laboratory evolution. Heterologous expression of nylonases also enabled <i>P. putida</i> to metabolize linear and cyclic nylon oligomers derived from chemical polyamide hydrolysis. RNA sequencing and reverse engineering revealed the metabolic pathways for these non-natural substrates. To demonstrate microbial upcycling, the <i>phaCAB</i> operon from <i>Cupriavidus necator</i> was heterologously expressed to enable production of polyhydroxybutyrate (PHB) from PA6 hydrolysates. This study presents a microbial host for the biological conversion, in combination with chemical hydrolysis, of polyamide monomers and mixed polyamids hydrolysates to a value-added product.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"85 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-025-01929-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aliphatic polyamides, or nylons, are widely used in the textile and automotive industry due to their high durability and tensile strength, but recycling rates are below 5%. Chemical recycling of polyamides is possible but typically yields mixtures of monomers and oligomers which hinders downstream purification. Here, Pseudomonas putida KT2440 was engineered to metabolize C6-polyamide monomers such as 6-aminohexanoic acid, ε-caprolactam and 1,6-hexamethylenediamine, guided by adaptive laboratory evolution. Heterologous expression of nylonases also enabled P. putida to metabolize linear and cyclic nylon oligomers derived from chemical polyamide hydrolysis. RNA sequencing and reverse engineering revealed the metabolic pathways for these non-natural substrates. To demonstrate microbial upcycling, the phaCAB operon from Cupriavidus necator was heterologously expressed to enable production of polyhydroxybutyrate (PHB) from PA6 hydrolysates. This study presents a microbial host for the biological conversion, in combination with chemical hydrolysis, of polyamide monomers and mixed polyamids hydrolysates to a value-added product.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.