Porous core-shell structured nitrogen doped carbon coated Cu2SnSe4 nanorod for improved sodium ion battery anode

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Enshen Zhang , Hailing Sun , Jinjin Zheng , Xiu Wang , Mai Xu , Shiliu Yang , Lvlv Gao
{"title":"Porous core-shell structured nitrogen doped carbon coated Cu2SnSe4 nanorod for improved sodium ion battery anode","authors":"Enshen Zhang ,&nbsp;Hailing Sun ,&nbsp;Jinjin Zheng ,&nbsp;Xiu Wang ,&nbsp;Mai Xu ,&nbsp;Shiliu Yang ,&nbsp;Lvlv Gao","doi":"10.1016/j.vacuum.2025.114059","DOIUrl":null,"url":null,"abstract":"<div><div>Binary metal selenides are promised as potential anodes for sodium storage by the reason of their desirable theoretical specific capacity and satisfied electronic conductivity. Nevertheless, the binary-metal selenides anodes normally undergo serious volume change and unsatisfactory cycle life. Herein, the porous core-shell structured nitrogen doped carbon coated Cu<sub>2</sub>SnSe<sub>4</sub> nanorod (Cu<sub>2</sub>SnSe<sub>4</sub>@NC) was obtained by simple template method. The porous core-shell structure not only relieves volume effect of Cu<sub>2</sub>SnSe<sub>4</sub>@NC anode, but also promotes the electrolyte infiltration and facilitates Na<sup>+</sup> migration. Moreover, the bimetallic composition and nitrogen doped carbon shell speed up electron transform and exhibit high-rate of Cu<sub>2</sub>SnSe<sub>4</sub>@NC anode. Benefiting from the above advantages, Cu<sub>2</sub>SnSe<sub>4</sub>@NC anode shows favorable electrochemical performance. The Cu<sub>2</sub>SnSe<sub>4</sub>@NC delivered a capacity of 263 mAh g<sup>−1</sup> at 7.0 A g<sup>−1</sup>, and showed an excellent cyclic stability of 311 mAh g<sup>−1</sup> over 800 cycles at 2.0 A g<sup>−1</sup>.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"234 ","pages":"Article 114059"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X25000491","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Binary metal selenides are promised as potential anodes for sodium storage by the reason of their desirable theoretical specific capacity and satisfied electronic conductivity. Nevertheless, the binary-metal selenides anodes normally undergo serious volume change and unsatisfactory cycle life. Herein, the porous core-shell structured nitrogen doped carbon coated Cu2SnSe4 nanorod (Cu2SnSe4@NC) was obtained by simple template method. The porous core-shell structure not only relieves volume effect of Cu2SnSe4@NC anode, but also promotes the electrolyte infiltration and facilitates Na+ migration. Moreover, the bimetallic composition and nitrogen doped carbon shell speed up electron transform and exhibit high-rate of Cu2SnSe4@NC anode. Benefiting from the above advantages, Cu2SnSe4@NC anode shows favorable electrochemical performance. The Cu2SnSe4@NC delivered a capacity of 263 mAh g−1 at 7.0 A g−1, and showed an excellent cyclic stability of 311 mAh g−1 over 800 cycles at 2.0 A g−1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
文献相关原料
公司名称
产品信息
阿拉丁
polyvinylidene fluoride binder (PVDF)
阿拉丁
carbon black
阿拉丁
selenium powder
阿拉丁
dopamine hydrochloride (DA?HCl)
阿拉丁
Tris(hydroxymethyl)-aminomethane
阿拉丁
polyvinyl pyrrolidone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信