Coal mining waste valorization in cement materials: A new approach to reduce soluble sulfates

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Juliana Acordi , Lisandro Simão , Eduarda Fraga Olivo , Richard Minatto Mezari , Luyza Bortolotto Teixeira , Morgana Nuernberg Sartor Faraco , Emily Saviatto , Jairo José Zocche , Fabiano Raupp-Pereira
{"title":"Coal mining waste valorization in cement materials: A new approach to reduce soluble sulfates","authors":"Juliana Acordi ,&nbsp;Lisandro Simão ,&nbsp;Eduarda Fraga Olivo ,&nbsp;Richard Minatto Mezari ,&nbsp;Luyza Bortolotto Teixeira ,&nbsp;Morgana Nuernberg Sartor Faraco ,&nbsp;Emily Saviatto ,&nbsp;Jairo José Zocche ,&nbsp;Fabiano Raupp-Pereira","doi":"10.1016/j.matlet.2025.138181","DOIUrl":null,"url":null,"abstract":"<div><div>Pyritic coal mining waste (CMW), resulted from coal beneficiation, causes the oxidation of pyrite and consequent formation of ferrous sulfate and sulfuric acid (also known as acid mine drainage), which has become a problem for the coal sector. Despite the potential valorization of CMW in cementitious materials, its use in mortars is limited by the presence of sulfates that generate efflorescence in the final product. This study proposes, for the first time, the utilization of a granulometric fraction of CMW mixed with barium carbonate in cementitious blends to convert soluble salts into insoluble compounds (products) through a chemical reaction. Verifying of ionic conductivity before and after the addition of BaCO<sub>3</sub> was used as an analysis parameter. BaCO<sub>3</sub> reduced conductivity, increased the pH of the sampled fractions and suppressed the development of efflorescence in the produced cementitious mortars.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"385 ","pages":"Article 138181"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25002101","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyritic coal mining waste (CMW), resulted from coal beneficiation, causes the oxidation of pyrite and consequent formation of ferrous sulfate and sulfuric acid (also known as acid mine drainage), which has become a problem for the coal sector. Despite the potential valorization of CMW in cementitious materials, its use in mortars is limited by the presence of sulfates that generate efflorescence in the final product. This study proposes, for the first time, the utilization of a granulometric fraction of CMW mixed with barium carbonate in cementitious blends to convert soluble salts into insoluble compounds (products) through a chemical reaction. Verifying of ionic conductivity before and after the addition of BaCO3 was used as an analysis parameter. BaCO3 reduced conductivity, increased the pH of the sampled fractions and suppressed the development of efflorescence in the produced cementitious mortars.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信