Optimisation and validation of Plume Chasing for robust and automated NOx and particle vehicle emission measurements

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Christina Schmidt , C. David Carslaw , J. Naomi Farren , N. René Gijlswijk , Markus Knoll , E. Norbert Ligterink , Jan Pieter Lollinga , Martin Pechout , Stefan Schmitt , Michal Vojtíšek , Quinn Vroom , Denis Pöhler
{"title":"Optimisation and validation of Plume Chasing for robust and automated NOx and particle vehicle emission measurements","authors":"Christina Schmidt ,&nbsp;C. David Carslaw ,&nbsp;J. Naomi Farren ,&nbsp;N. René Gijlswijk ,&nbsp;Markus Knoll ,&nbsp;E. Norbert Ligterink ,&nbsp;Jan Pieter Lollinga ,&nbsp;Martin Pechout ,&nbsp;Stefan Schmitt ,&nbsp;Michal Vojtíšek ,&nbsp;Quinn Vroom ,&nbsp;Denis Pöhler","doi":"10.1016/j.aeaoa.2025.100317","DOIUrl":null,"url":null,"abstract":"<div><div>High-emitting vehicles comprise a small proportion (<span><math><mrow><mo>&lt;</mo><mn>20</mn><mspace></mspace><mstyle><mtext>%</mtext></mstyle></mrow></math></span>) of the vehicle fleet, yet are responsible for the majority (<span><math><mrow><mo>&gt;</mo><mn>50</mn><mspace></mspace><mstyle><mtext>%</mtext></mstyle></mrow></math></span>) of vehicle emissions. Plume Chasing is a reliable, high-precision measurement technique that derives emissions without interfering with the vehicle being tested. Its characteristics make it well suited for high emitter identification. In this study, the influence of several Plume Chasing measurement and data processing methods on the results of derived on-road <span><math><msub><mrow><mi>NO</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> and particle fuel-specific emission factors are investigated. A range of vehicles, representative of a common vehicle fleet, were tested under different driving conditions on a test track. The derived results were evaluated against on-board SEMS (Smart Emission Measurement System) emission measurements. We found that one of the best performing Plume Chasing data processing methods is based on the use of a rolling minimum for background determination. The average absolute deviation of the determined <span><math><mrow><msub><mrow><mi>NO</mi></mrow><mrow><mi>x</mi></mrow></msub><mo>/</mo><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emission ratios from the reference was <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn><mrow><mo>(</mo><mn>46</mn><mo>)</mo></mrow><mspace></mspace><mstyle><mi>p</mi><mi>p</mi><mi>m</mi></mstyle><mo>/</mo><mstyle><mtext>%</mtext></mstyle></mrow></math></span> for the heavy duty vehicle and <span><math><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mrow><mo>(</mo><mn>29</mn><mo>)</mo></mrow><mspace></mspace><mstyle><mi>p</mi><mi>p</mi><mi>m</mi></mstyle><mo>/</mo><mstyle><mtext>%</mtext></mstyle></mrow></math></span> for the light duty vehicles tested. The methods were easy to automate and suitable for high emitter detection and quantification of emissions from two-wheeled vehicles. Inaccurate emission factors derived from Plume Chasing measurements occurred only in situations when emissions were significantly influenced by a strong plume from vehicles driving directly ahead of the vehicle of interest.</div></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"25 ","pages":"Article 100317"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162125000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High-emitting vehicles comprise a small proportion (<20%) of the vehicle fleet, yet are responsible for the majority (>50%) of vehicle emissions. Plume Chasing is a reliable, high-precision measurement technique that derives emissions without interfering with the vehicle being tested. Its characteristics make it well suited for high emitter identification. In this study, the influence of several Plume Chasing measurement and data processing methods on the results of derived on-road NOx and particle fuel-specific emission factors are investigated. A range of vehicles, representative of a common vehicle fleet, were tested under different driving conditions on a test track. The derived results were evaluated against on-board SEMS (Smart Emission Measurement System) emission measurements. We found that one of the best performing Plume Chasing data processing methods is based on the use of a rolling minimum for background determination. The average absolute deviation of the determined NOx/CO2 emission ratios from the reference was 0.2(46)ppm/% for the heavy duty vehicle and 0.3(29)ppm/% for the light duty vehicles tested. The methods were easy to automate and suitable for high emitter detection and quantification of emissions from two-wheeled vehicles. Inaccurate emission factors derived from Plume Chasing measurements occurred only in situations when emissions were significantly influenced by a strong plume from vehicles driving directly ahead of the vehicle of interest.

Abstract Image

优化和验证烟羽追踪稳健和自动化氮氧化物和颗粒车辆排放测量
高排放车辆只占车辆总数的一小部分(20%),但却占车辆排放量的大部分(50%)。羽流追踪是一种可靠的、高精度的测量技术,它可以在不干扰被测车辆的情况下产生排放。它的特性使其非常适合于高辐射源的识别。在本研究中,研究了几种羽流追踪测量和数据处理方法对衍生的道路NOx和颗粒燃料特定排放因子结果的影响。一系列车辆,代表一个共同的车队,在测试轨道上不同的驾驶条件下进行了测试。根据机载SEMS(智能排放测量系统)的排放测量结果对所得结果进行了评估。我们发现,性能最好的羽流追踪数据处理方法之一是基于使用滚动最小值来确定背景。测定的NOx/CO2排放比与参考值的平均绝对偏差,重型车辆为- 0.2(46)ppm/%,轻型车辆为0.3(29)ppm/%。该方法易于自动化,适用于两轮车辆高排放源的检测和量化。从羽流追踪测量中得出的不准确排放因子仅发生在排放受到直接行驶在目标车辆前方的车辆产生的强烈羽流的显著影响的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Environment: X
Atmospheric Environment: X Environmental Science-Environmental Science (all)
CiteScore
8.00
自引率
0.00%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信