{"title":"Counting polynomials with distinct zeros in Galois ring GR(p2,r)","authors":"Ying Wang , Haiyan Zhou","doi":"10.1016/j.disc.2024.114354","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>R</mi><mo>=</mo><mi>G</mi><mi>R</mi><mo>(</mo><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mi>r</mi><mo>)</mo></math></span> be a Galois ring of characteristic <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with cardinality <span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>r</mi></mrow></msup></math></span>, where <em>p</em> is a prime, and <em>ξ</em> is a root of a basic irreducible polynomial of degree <em>r</em> in <span><math><msub><mrow><mi>Z</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></msub><mo>[</mo><mi>x</mi><mo>]</mo></math></span>. Let <em>k</em> be a positive integer and <em>m</em> be a integer such that <span><math><mi>k</mi><mo>+</mo><mi>m</mi><mo>⩾</mo><mn>0</mn></math></span>. Fix a polynomial <span><math><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo></math></span> of degree <span><math><mi>k</mi><mo>+</mo><mi>m</mi></math></span>. For a subset <em>D</em> of <em>R</em>, let <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>)</mo><mo>=</mo><mo>♯</mo><mo>{</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>R</mi><mo>[</mo><mi>x</mi><mo>]</mo><mo>|</mo><mi>deg</mi><mo></mo><mo>(</mo><mi>g</mi><mo>)</mo><mo>⩽</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>,</mo><mspace></mspace><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mtext>has exactly s distinct roots in D</mtext><mo>}</mo></math></span>. In this paper, we obtain formulae for <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>)</mo></math></span> when <span><math><mi>D</mi><mo>=</mo><mo>〈</mo><mi>ξ</mi><mo>〉</mo><mo>⋃</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> and <span><math><mi>m</mi><mo>⩽</mo><mn>1</mn></math></span> and give some identities for <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>s</mi><mo>)</mo></math></span> by using the generalization of the Macilliams identity.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114354"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004850","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a Galois ring of characteristic with cardinality , where p is a prime, and ξ is a root of a basic irreducible polynomial of degree r in . Let k be a positive integer and m be a integer such that . Fix a polynomial of degree . For a subset D of R, let . In this paper, we obtain formulae for when and and give some identities for by using the generalization of the Macilliams identity.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.