{"title":"Construction of new linear codes with good parameters from group rings and skew group rings","authors":"Cong Yu, Shixin Zhu","doi":"10.1016/j.disc.2024.114349","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we use the left principal ideals of group rings and skew group rings to construct linear codes over small finite fields. We study three class of groups: Semidirect product of two cyclic groups, direct product of a cyclic group and semidirect product of two cyclic groups, wreath product of a cyclic group of order <em>n</em> and a cyclic group of order 2. Using these groups, we can get some generator matrices over <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Then by computer search, we obtain 18 new linear codes with parameters <span><math><msub><mrow><mo>[</mo><mn>32</mn><mo>,</mo><mn>19</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>36</mn><mo>,</mo><mn>22</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>39</mn><mo>,</mo><mn>21</mn><mo>,</mo><mn>10</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>26</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>30</mn><mo>,</mo><mn>6</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>55</mn><mo>,</mo><mn>16</mn><mo>,</mo><mn>22</mn><mo>]</mo></mrow><mrow><mn>3</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>24</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>11</mn><mo>,</mo><mn>20</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>27</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>29</mn><mo>,</mo><mn>8</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>25</mn><mo>,</mo><mn>10</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>,<span><math><msub><mrow><mo>[</mo><mn>50</mn><mo>,</mo><mn>13</mn><mo>,</mo><mn>24</mn><mo>]</mo></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>50</mn><mo>,</mo><mn>9</mn><mo>,</mo><mn>30</mn><mo>]</mo></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>39</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>19</mn><mo>]</mo></mrow><mrow><mn>5</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>40</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>26</mn><mo>]</mo></mrow><mrow><mn>7</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>18</mn><mo>,</mo><mn>12</mn><mo>,</mo><mn>6</mn><mo>]</mo></mrow><mrow><mn>9</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>21</mn><mo>,</mo><mn>16</mn><mo>,</mo><mn>5</mn><mo>]</mo></mrow><mrow><mn>9</mn></mrow></msub></math></span>, <span><math><msub><mrow><mo>[</mo><mn>42</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>30</mn><mo>]</mo></mrow><mrow><mn>9</mn></mrow></msub></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114349"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004801","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we use the left principal ideals of group rings and skew group rings to construct linear codes over small finite fields. We study three class of groups: Semidirect product of two cyclic groups, direct product of a cyclic group and semidirect product of two cyclic groups, wreath product of a cyclic group of order n and a cyclic group of order 2. Using these groups, we can get some generator matrices over . Then by computer search, we obtain 18 new linear codes with parameters , , ,,, , , , , , ,, , , , , , .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.