Subchromatic numbers of powers of graphs with excluded minors

IF 0.7 3区 数学 Q2 MATHEMATICS
Pedro P. Cortés , Pankaj Kumar , Benjamin Moore , Patrice Ossona de Mendez , Daniel A. Quiroz
{"title":"Subchromatic numbers of powers of graphs with excluded minors","authors":"Pedro P. Cortés ,&nbsp;Pankaj Kumar ,&nbsp;Benjamin Moore ,&nbsp;Patrice Ossona de Mendez ,&nbsp;Daniel A. Quiroz","doi":"10.1016/j.disc.2024.114377","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>k-subcolouring</em> of a graph <em>G</em> is a function <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>}</mo></math></span> such that the set of vertices coloured <em>i</em> induce a disjoint union of cliques. The <em>subchromatic number</em>, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>sub</mtext></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the minimum <em>k</em> such that <em>G</em> admits a <em>k</em>-subcolouring. Nešetřil, Ossona de Mendez, Pilipczuk, and Zhu (2020), recently raised the problem of finding tight upper bounds for <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>sub</mtext></mrow></msub><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> when <em>G</em> is planar. We show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>sub</mtext></mrow></msub><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>≤</mo><mn>43</mn></math></span> when <em>G</em> is planar, improving their bound of 135. We give even better bounds when the planar graph <em>G</em> has larger girth. Moreover, we show that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>sub</mtext></mrow></msub><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo><mo>≤</mo><mn>95</mn></math></span>, improving the previous bound of 364. For these we adapt some recent techniques of Almulhim and Kierstead (2022), while also extending the decompositions of triangulated planar graphs of Van den Heuvel, Ossona de Mendez, Quiroz, Rabinovich and Siebertz (2017), to planar graphs of arbitrary girth. Note that these decompositions are the precursors of the graph product structure theorem of planar graphs.</div><div>We give improved bounds for <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mtext>sub</mtext></mrow></msub><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span> for all <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>, whenever <em>G</em> has bounded treewidth, bounded simple treewidth, bounded genus, or excludes a clique or biclique as a minor. For this we introduce a family of parameters which form a gradation between the strong and the weak colouring numbers. We give upper bounds for these parameters for graphs coming from such classes.</div><div>Finally, we give a 2-approximation algorithm for the subchromatic number of graphs having a layering in which each layer has bounded cliquewidth and this layering is computable in polynomial time (like the class of all <span><math><msup><mrow><mi>d</mi></mrow><mrow><mi>t</mi><mi>h</mi></mrow></msup></math></span> powers of planar graphs, for fixed <em>d</em>). This algorithm works even if the power <em>p</em> and the graph <em>G</em> is unknown.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114377"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24005089","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A k-subcolouring of a graph G is a function f:V(G){0,,k1} such that the set of vertices coloured i induce a disjoint union of cliques. The subchromatic number, χsub(G), is the minimum k such that G admits a k-subcolouring. Nešetřil, Ossona de Mendez, Pilipczuk, and Zhu (2020), recently raised the problem of finding tight upper bounds for χsub(G2) when G is planar. We show that χsub(G2)43 when G is planar, improving their bound of 135. We give even better bounds when the planar graph G has larger girth. Moreover, we show that χsub(G3)95, improving the previous bound of 364. For these we adapt some recent techniques of Almulhim and Kierstead (2022), while also extending the decompositions of triangulated planar graphs of Van den Heuvel, Ossona de Mendez, Quiroz, Rabinovich and Siebertz (2017), to planar graphs of arbitrary girth. Note that these decompositions are the precursors of the graph product structure theorem of planar graphs.
We give improved bounds for χsub(Gp) for all p2, whenever G has bounded treewidth, bounded simple treewidth, bounded genus, or excludes a clique or biclique as a minor. For this we introduce a family of parameters which form a gradation between the strong and the weak colouring numbers. We give upper bounds for these parameters for graphs coming from such classes.
Finally, we give a 2-approximation algorithm for the subchromatic number of graphs having a layering in which each layer has bounded cliquewidth and this layering is computable in polynomial time (like the class of all dth powers of planar graphs, for fixed d). This algorithm works even if the power p and the graph G is unknown.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信