{"title":"Properly colored C4→'s in arc-colored complete and complete bipartite digraphs","authors":"Mengyu Duan , Binlong Li , Shenggui Zhang","doi":"10.1016/j.disc.2024.114367","DOIUrl":null,"url":null,"abstract":"<div><div>A subdigraph of an arc-colored digraph is called <em>properly colored</em> if its every consecutive arcs have distinct colors. Let <em>D</em> be a digraph. For a digraph <em>H</em>, let <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> be the minimum number such that every arc-colored digraph <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span> with <span><math><mi>c</mi><mo>(</mo><mi>D</mi><mo>)</mo><mo>≥</mo><mi>p</mi><mi>c</mi><mo>(</mo><mi>D</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> contains a properly colored copy of <em>H</em>, where <span><math><mi>c</mi><mo>(</mo><mi>D</mi><mo>)</mo></math></span> is the number of colors of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>C</mi></mrow></msup></math></span>. Let <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> and <span><math><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover></math></span> be the digraphs obtained from the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> respectively by replacing each edge <em>uv</em> with a pair of symmetric arcs <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>v</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>; and let <span><math><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover></math></span> be the directed cycle of length <em>k</em>. In this paper we determine <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>)</mo></math></span>, <span><math><mi>p</mi><mi>c</mi><mo>(</mo><mover><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow><mrow><mo>↔</mo></mrow></mover><mo>,</mo><mover><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow><mrow><mo>→</mo></mrow></mover><mo>)</mo></math></span> and characterize the corresponding extremal arc-colorings of digraphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114367"},"PeriodicalIF":0.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004989","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A subdigraph of an arc-colored digraph is called properly colored if its every consecutive arcs have distinct colors. Let D be a digraph. For a digraph H, let be the minimum number such that every arc-colored digraph with contains a properly colored copy of H, where is the number of colors of . Let and be the digraphs obtained from the complete graph and the complete bipartite graph respectively by replacing each edge uv with a pair of symmetric arcs and ; and let be the directed cycle of length k. In this paper we determine , and characterize the corresponding extremal arc-colorings of digraphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.