Cláudia Brito , Noela Pina , Tânia Esteves , Ricardo Vitorino , Inês Cunha , João Paulo
{"title":"Promoting sustainable and personalized travel behaviors while preserving data privacy","authors":"Cláudia Brito , Noela Pina , Tânia Esteves , Ricardo Vitorino , Inês Cunha , João Paulo","doi":"10.1016/j.treng.2024.100237","DOIUrl":null,"url":null,"abstract":"<div><div>Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: <em>(i)</em> increase users’ awareness regarding their carbon footprint, <em>(ii)</em> provide personalized recommendations and incentives for using sustainable transportation alternatives and, <em>(iii)</em> guarantee that any personal data collected from the user is kept private.</div><div>This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (<em>e.g.</em>, foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.</div></div>","PeriodicalId":34480,"journal":{"name":"Transportation Engineering","volume":"19 ","pages":"Article 100237"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666691X24000125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality. To do so, policymakers seek ways to foster smarter and cleaner transportation solutions. However, citizens lack awareness of their carbon footprint and of greener mobility alternatives such as public transports. With this, three main challenges emerge: (i) increase users’ awareness regarding their carbon footprint, (ii) provide personalized recommendations and incentives for using sustainable transportation alternatives and, (iii) guarantee that any personal data collected from the user is kept private.
This paper addresses these challenges by proposing a new methodology. Created under the FranchetAI project, the methodology combines federated Artificial Intelligence (AI) and Greenhouse Gas (GHG) estimation models to calculate the carbon footprint of users when choosing different transportation modes (e.g., foot, car, bus). Through a mobile application that keeps the privacy of users’ personal information, the project aims at providing detailed reports to inform citizens about their impact on the environment, and an incentive program to promote the usage of more sustainable mobility alternatives.