Charline van Innis , Michal K. Budzik , Thomas Pardoen
{"title":"Bridging in co-cured composite joints","authors":"Charline van Innis , Michal K. Budzik , Thomas Pardoen","doi":"10.1016/j.ijsolstr.2024.113194","DOIUrl":null,"url":null,"abstract":"<div><div>Further deployment of advanced polymer-based composites in critical structures requires, among others, new progress in adhesive bonding solutions from processing to performance. Among others, the cost and time intensity of manufacturing can be mitigated through co-curing of composite elements using a thermoplastic film, typically a Polyetherimide (PEI) film. However, the use of PEI films in resin transfer moulding leads to low toughness (<500 J/m<sup>2</sup>). The objective of this work is to improve the toughness of co-cured composite joints by inserting UHMPE filaments between a PEI film and the composite panels in order to trigger crack bridging and a significant R-effect. The influence of the spacing and of the tensile strength of the filaments has been determined experimentally, resulting in an increase of the toughness by up to a factor 3. In addition, the influence of these parameters has been further investigated with a closed-form crack propagation model. Decreasing the spacing and increasing the strength of the filaments enhances the joint toughness. Increasing the tensile elongation of the filaments results in a less steep R-effect, requiring a longer crack propagation to attain of the maximum fracture toughness.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"309 ","pages":"Article 113194"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005535","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Further deployment of advanced polymer-based composites in critical structures requires, among others, new progress in adhesive bonding solutions from processing to performance. Among others, the cost and time intensity of manufacturing can be mitigated through co-curing of composite elements using a thermoplastic film, typically a Polyetherimide (PEI) film. However, the use of PEI films in resin transfer moulding leads to low toughness (<500 J/m2). The objective of this work is to improve the toughness of co-cured composite joints by inserting UHMPE filaments between a PEI film and the composite panels in order to trigger crack bridging and a significant R-effect. The influence of the spacing and of the tensile strength of the filaments has been determined experimentally, resulting in an increase of the toughness by up to a factor 3. In addition, the influence of these parameters has been further investigated with a closed-form crack propagation model. Decreasing the spacing and increasing the strength of the filaments enhances the joint toughness. Increasing the tensile elongation of the filaments results in a less steep R-effect, requiring a longer crack propagation to attain of the maximum fracture toughness.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.