Emergence of tension–compression asymmetry from a complete phase-field approach to brittle fracture

IF 3.4 3区 工程技术 Q1 MECHANICS
Chang Liu, Aditya Kumar
{"title":"Emergence of tension–compression asymmetry from a complete phase-field approach to brittle fracture","authors":"Chang Liu,&nbsp;Aditya Kumar","doi":"10.1016/j.ijsolstr.2024.113170","DOIUrl":null,"url":null,"abstract":"<div><div>The classical variational approach to brittle fracture propagation does not distinguish between strain energy accumulation in tension versus compression and consequently results in physically unrealistic cracking under compression. A variety of energy splits have been proposed as a possible remedy. However, a unique energy split that can describe this asymmetry for general loading conditions has not been found. The main objective of this paper is to show that a complete phase-field theory of brittle fracture nucleation and propagation, one that accounts for the material strength at large, can naturally capture the tension–compression asymmetry in crack propagation without an energy split. One such theory has been recently proposed by Kumar et al. (2018). Over the past few years, several studies have shown that this theory is capable of accurately describing fracture nucleation and propagation for materials soft and hard under arbitrary monotonic loading conditions. However, a systematic study of the tension–compression asymmetry that emerges from this theory has not yet been reported. This paper does precisely that. In particular, this paper reports a comprehensive study of crack propagation in two problems, one involving a symmetric tension–compression state and the other involving larger compressive stresses at the crack tip. The results are compared with popular energy splits used in literature. The results show that, remarkably, for the second problem, only the complete theory is able to produce experimentally consistent results.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"309 ","pages":"Article 113170"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324005298","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The classical variational approach to brittle fracture propagation does not distinguish between strain energy accumulation in tension versus compression and consequently results in physically unrealistic cracking under compression. A variety of energy splits have been proposed as a possible remedy. However, a unique energy split that can describe this asymmetry for general loading conditions has not been found. The main objective of this paper is to show that a complete phase-field theory of brittle fracture nucleation and propagation, one that accounts for the material strength at large, can naturally capture the tension–compression asymmetry in crack propagation without an energy split. One such theory has been recently proposed by Kumar et al. (2018). Over the past few years, several studies have shown that this theory is capable of accurately describing fracture nucleation and propagation for materials soft and hard under arbitrary monotonic loading conditions. However, a systematic study of the tension–compression asymmetry that emerges from this theory has not yet been reported. This paper does precisely that. In particular, this paper reports a comprehensive study of crack propagation in two problems, one involving a symmetric tension–compression state and the other involving larger compressive stresses at the crack tip. The results are compared with popular energy splits used in literature. The results show that, remarkably, for the second problem, only the complete theory is able to produce experimentally consistent results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
8.30%
发文量
405
审稿时长
70 days
期刊介绍: The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field. Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信