Direct Implementation of MSn Using Frequency Scanning Collision Induced Dissociation in a Digital Ion Trap Mass Spectrometer

IF 3.1 2区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Jie Ren, Pingping Chen, Yunjing Zhang, Xingli He, Lingfeng Li* and Peng Li*, 
{"title":"Direct Implementation of MSn Using Frequency Scanning Collision Induced Dissociation in a Digital Ion Trap Mass Spectrometer","authors":"Jie Ren,&nbsp;Pingping Chen,&nbsp;Yunjing Zhang,&nbsp;Xingli He,&nbsp;Lingfeng Li* and Peng Li*,&nbsp;","doi":"10.1021/jasms.4c0039510.1021/jasms.4c00395","DOIUrl":null,"url":null,"abstract":"<p >Tandem mass spectrometry (MS<sup>n</sup>) is one of the most effective methods to obtain the structures of organic molecules, enabling the observation of multigenerational ion fragments. Collision-induced dissociation (CID) is currently the most mature technique for mass spectrometry analysis. Ion trap mass spectrometry (ITMS) is favored for on-site detection field, due to its ability of MS<sup>n</sup> analysis with a single trap and its small size. However, conventional MS<sup>n</sup> analysis in ITMS requires repeated isolation and excitation processes multiple times, causing high complexity of the entire scanning process. Additionally, the fragment ion detection in ITMS is limited by low-mass cutoff (LMCO) and the weak fragmentation yield. In this study, a method named reverse scanning-collision induced dissociation (RS-CID) is proposed, which involves increasing RF and AC frequencies while maintaining RF voltage constant during the CID process. Twelve representative illegal drugs were analyzed adopting this method, enhancing the intensities of low-mass fragment ions compared to conventional dissociation method. Moreover, experimental results with ketamine and methamphetamine show that RS-CID effectively reduces the LMCO effect and slightly improves CID efficiency. It also enables direct acquisition of their multigeneration fragment ions spectra in a single sequence of ion injection, cooling, isolation, RS-CID, cooling, mass scanning and empty. The experiments to distinguish between the isomers ab-4en-pinaca and adb-3en-butinaca as well as the isomeric compounds 5f-cumyl-pegaclone and cumyl-pipetinaca were also successful by this method. In summary, RS-CID enables MS<sup>n</sup> analysis in a single sequence and improves the low-mass fragment ions intensity. It can simplify workflows, achieve faster analysis and provide more valuable mass spectral information.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":"36 2","pages":"309–317 309–317"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jasms.4c00395","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Tandem mass spectrometry (MSn) is one of the most effective methods to obtain the structures of organic molecules, enabling the observation of multigenerational ion fragments. Collision-induced dissociation (CID) is currently the most mature technique for mass spectrometry analysis. Ion trap mass spectrometry (ITMS) is favored for on-site detection field, due to its ability of MSn analysis with a single trap and its small size. However, conventional MSn analysis in ITMS requires repeated isolation and excitation processes multiple times, causing high complexity of the entire scanning process. Additionally, the fragment ion detection in ITMS is limited by low-mass cutoff (LMCO) and the weak fragmentation yield. In this study, a method named reverse scanning-collision induced dissociation (RS-CID) is proposed, which involves increasing RF and AC frequencies while maintaining RF voltage constant during the CID process. Twelve representative illegal drugs were analyzed adopting this method, enhancing the intensities of low-mass fragment ions compared to conventional dissociation method. Moreover, experimental results with ketamine and methamphetamine show that RS-CID effectively reduces the LMCO effect and slightly improves CID efficiency. It also enables direct acquisition of their multigeneration fragment ions spectra in a single sequence of ion injection, cooling, isolation, RS-CID, cooling, mass scanning and empty. The experiments to distinguish between the isomers ab-4en-pinaca and adb-3en-butinaca as well as the isomeric compounds 5f-cumyl-pegaclone and cumyl-pipetinaca were also successful by this method. In summary, RS-CID enables MSn analysis in a single sequence and improves the low-mass fragment ions intensity. It can simplify workflows, achieve faster analysis and provide more valuable mass spectral information.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
257
审稿时长
1 months
期刊介绍: The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role. Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信