{"title":"Guided Perspective Drawing: A Model-Based Method to Build Representational Competence in Organic Chemistry","authors":"Elijah St. Germain*, ","doi":"10.1021/acs.jchemed.4c0027610.1021/acs.jchemed.4c00276","DOIUrl":null,"url":null,"abstract":"<p >Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models provides additional opportunity for practice, but having three different learning modalities (drawings, hand-held models and computer models) creates the need for a systematic teaching approach that integrates these. A model-first teaching method is presented in which Newman projections and the conformations of butane are taught through a guided exercise in drawing molecular models in specific conformations from two viewpoints. The viewpoints correspond to the Newman projection and the bond line drawing, linking them to each other through the 3D object that they both represent. Participation in this exercise correlated with significantly higher competency in translating between the two representations compared to a large control group, who attended the lecture but did not use the models. This method was then extended into a multimodal peer-to-peer learning activity where students applied these skills by critically evaluating differences in conformational or stereochemical details between a 2D molecular drawing prompt and a computer-generated 3D model. Students were able to rotate the computer model to find the point of view corresponding to Newman projections or bond-line drawings, use hand-held models to analyze the differences, and discover stereochemical insights that had not yet been taught.</p>","PeriodicalId":43,"journal":{"name":"Journal of Chemical Education","volume":"102 1","pages":"410–414 410–414"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Education","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jchemed.4c00276","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Many approaches to teaching Newman projections and conformational manipulation rely on lecturing using only two-dimensional representations. While molecular models are recognized as useful learning tools, students are often left to figure out how to use them during the initial learning process. The availability of basic online molecular models provides additional opportunity for practice, but having three different learning modalities (drawings, hand-held models and computer models) creates the need for a systematic teaching approach that integrates these. A model-first teaching method is presented in which Newman projections and the conformations of butane are taught through a guided exercise in drawing molecular models in specific conformations from two viewpoints. The viewpoints correspond to the Newman projection and the bond line drawing, linking them to each other through the 3D object that they both represent. Participation in this exercise correlated with significantly higher competency in translating between the two representations compared to a large control group, who attended the lecture but did not use the models. This method was then extended into a multimodal peer-to-peer learning activity where students applied these skills by critically evaluating differences in conformational or stereochemical details between a 2D molecular drawing prompt and a computer-generated 3D model. Students were able to rotate the computer model to find the point of view corresponding to Newman projections or bond-line drawings, use hand-held models to analyze the differences, and discover stereochemical insights that had not yet been taught.
期刊介绍:
The Journal of Chemical Education is the official journal of the Division of Chemical Education of the American Chemical Society, co-published with the American Chemical Society Publications Division. Launched in 1924, the Journal of Chemical Education is the world’s premier chemical education journal. The Journal publishes peer-reviewed articles and related information as a resource to those in the field of chemical education and to those institutions that serve them. JCE typically addresses chemical content, activities, laboratory experiments, instructional methods, and pedagogies. The Journal serves as a means of communication among people across the world who are interested in the teaching and learning of chemistry. This includes instructors of chemistry from middle school through graduate school, professional staff who support these teaching activities, as well as some scientists in commerce, industry, and government.