Detailed Structural Elucidation of Antibody-Drug Conjugate Biotransformation Species Using High Resolution Multiple Reaction Monitoring Mass Spectrometry with Orthogonal Dissociation Methods

IF 4.9 Q1 CHEMISTRY, MEDICINAL
Junyan Yang, Hui Yin Tan, Jiaqi Yuan, Yue Huang and Anton I. Rosenbaum*, 
{"title":"Detailed Structural Elucidation of Antibody-Drug Conjugate Biotransformation Species Using High Resolution Multiple Reaction Monitoring Mass Spectrometry with Orthogonal Dissociation Methods","authors":"Junyan Yang,&nbsp;Hui Yin Tan,&nbsp;Jiaqi Yuan,&nbsp;Yue Huang and Anton I. Rosenbaum*,&nbsp;","doi":"10.1021/acsptsci.4c0044510.1021/acsptsci.4c00445","DOIUrl":null,"url":null,"abstract":"<p >Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs <i>in vitro</i> and <i>in vivo</i> is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability <i>in vivo</i> using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach. Herein, we employed a LC-high resolution multiple reaction monitoring (LC-MRM<sup>HR</sup>) approach using both collision-induced dissociation (CID) and electron-activated dissociation (EAD) methods, confirming our earlier findings. Furthermore, we were able to obtain additional detailed structural information on the biotransformation products expanding on earlier intact analyses. We also highlight the high sensitivity of LC-MRM<sup>HR</sup> for successfully identifying minor biotransformation products at low concentrations that were not detectable using the intact protein LC-HRMS workflow. Especially, EAD aided in the confirmation of biotransformation species that contain newly formed disulfide bonds due to the preferential dissociation of disulfide bonds using this method. We observed biotransformation reactions that vary between linker-payload (PL) conjugation sites on the antibody. For example, the trend toward constitutional isomerism in thio-succinimide linker hydrolysis, and the resulting positional isomers from thiol adduct formation following linker-PL deconjugation. The reported orthogonal analytical approaches highly complement and fortify the intact protein LC-HRMS data. This study sheds further light on detailed structural characterization of various ADC species and validates the proposed biotransformation pathways explaining the stability of AZD8205 <i>in vivo</i>.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"113–123 113–123"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00445","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs in vitro and in vivo is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability in vivo using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach. Herein, we employed a LC-high resolution multiple reaction monitoring (LC-MRMHR) approach using both collision-induced dissociation (CID) and electron-activated dissociation (EAD) methods, confirming our earlier findings. Furthermore, we were able to obtain additional detailed structural information on the biotransformation products expanding on earlier intact analyses. We also highlight the high sensitivity of LC-MRMHR for successfully identifying minor biotransformation products at low concentrations that were not detectable using the intact protein LC-HRMS workflow. Especially, EAD aided in the confirmation of biotransformation species that contain newly formed disulfide bonds due to the preferential dissociation of disulfide bonds using this method. We observed biotransformation reactions that vary between linker-payload (PL) conjugation sites on the antibody. For example, the trend toward constitutional isomerism in thio-succinimide linker hydrolysis, and the resulting positional isomers from thiol adduct formation following linker-PL deconjugation. The reported orthogonal analytical approaches highly complement and fortify the intact protein LC-HRMS data. This study sheds further light on detailed structural characterization of various ADC species and validates the proposed biotransformation pathways explaining the stability of AZD8205 in vivo.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信