Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System

IF 4.9 Q1 CHEMISTRY, MEDICINAL
Yuming Wang, Zhou Tong, Jingchun Han, Chuangchuang Li and Xiuping Chen*, 
{"title":"Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System","authors":"Yuming Wang,&nbsp;Zhou Tong,&nbsp;Jingchun Han,&nbsp;Chuangchuang Li and Xiuping Chen*,&nbsp;","doi":"10.1021/acsptsci.4c0039710.1021/acsptsci.4c00397","DOIUrl":null,"url":null,"abstract":"<p >Infectious diseases have affected 13.7 million patients, placing a heavy burden on society. Furthermore, inappropriate and unrequited utilization of antibiotics has led to antimicrobial resistance worldwide. However, well-established targeted screening of environmental isolates or compound libraries has produced limited new drugs. The current situation, in which drug development is delayed, bacterial evolution is occurring, and drug resistance is emerging, requires the development of new targets and/or new strategies to combat infections. Some novel antibacterial strategies have been proposed, among which disruption of protein balance by inhibiting transcription and translation machinery is one of the proven effective antimicrobial strategies. Molecular chaperonins could mediate the correct folding of proteins, especially under conditions such as high temperature and pressure. The GroEL/ES system has been confirmed as one of the key molecular chaperones for bacterial viability. Recent data have revealed the antibacterial activities of GroEL/ES-targeted compounds, highlighting the potential role of GroEL/ES in the development of novel antibiotics. In this brief review, we discuss the function of the GroEL/ES system and summarize the inhibitors of the GroEL/ES system. The GroEL/ES system may represent a promising drug target for the exploration of novel antibiotics.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"10–20 10–20"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00397","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Infectious diseases have affected 13.7 million patients, placing a heavy burden on society. Furthermore, inappropriate and unrequited utilization of antibiotics has led to antimicrobial resistance worldwide. However, well-established targeted screening of environmental isolates or compound libraries has produced limited new drugs. The current situation, in which drug development is delayed, bacterial evolution is occurring, and drug resistance is emerging, requires the development of new targets and/or new strategies to combat infections. Some novel antibacterial strategies have been proposed, among which disruption of protein balance by inhibiting transcription and translation machinery is one of the proven effective antimicrobial strategies. Molecular chaperonins could mediate the correct folding of proteins, especially under conditions such as high temperature and pressure. The GroEL/ES system has been confirmed as one of the key molecular chaperones for bacterial viability. Recent data have revealed the antibacterial activities of GroEL/ES-targeted compounds, highlighting the potential role of GroEL/ES in the development of novel antibiotics. In this brief review, we discuss the function of the GroEL/ES system and summarize the inhibitors of the GroEL/ES system. The GroEL/ES system may represent a promising drug target for the exploration of novel antibiotics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信