Cemdomespib Therapy Slows the Progression of Neuromuscular Weakness and Demyelination in the R75W-Connexin 32 Animal Model of Charcot–Marie–Tooth 1X Disease

IF 4.9 Q1 CHEMISTRY, MEDICINAL
Ryan M. Lang, Riddhi Chawla, Sugandha Patel, Charles K. Abrams and Rick T. Dobrowsky*, 
{"title":"Cemdomespib Therapy Slows the Progression of Neuromuscular Weakness and Demyelination in the R75W-Connexin 32 Animal Model of Charcot–Marie–Tooth 1X Disease","authors":"Ryan M. Lang,&nbsp;Riddhi Chawla,&nbsp;Sugandha Patel,&nbsp;Charles K. Abrams and Rick T. Dobrowsky*,&nbsp;","doi":"10.1021/acsptsci.4c0046410.1021/acsptsci.4c00464","DOIUrl":null,"url":null,"abstract":"<p >Mutations in connexin 32 (Cx32) are a common cause of Charcot–Marie–Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression. However, whether a similar efficacy may manifest in models of CMT1X arising from Cx32 mutations that cause the organellar accumulation of the protein was unclear. Additionally, it was unclear whether cemdomespib therapy slowed the rate of demyelination/NMJ degeneration or stabilized nerve and NMJ morphology to levels present at the initiation of drug therapy. To address these issues, 4-month-old R75W-Cx32 mice, which accumulate the mutant Cx32 in golgi, were treated for 0, 10, or 20 weeks with 0 or 3 mg/kg cemdomespib. Grip strength, motor nerve conduction velocity (MNCV), femoral nerve myelination, and NMJ morphology were quantified. Daily drug therapy significantly slowed the decline in grip strength over the course of treatment, while 20 weeks of drug treatment significantly improved MNCV and decreased the g-ratio and the number of thinly myelinated femoral nerve axons. Similarly, 20 weeks of cemdomespib therapy improved the NMJ morphology and the overlap between presynaptic (synaptophysin) and postsynaptic (α-bungarotoxin) markers. These data show that cemdomespib therapy slows the rate of neuromuscular decline and demyelination and may present a disease-modifying approach for patients with gain-of-function Cx32 mutations.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"124–135 124–135"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mutations in connexin 32 (Cx32) are a common cause of Charcot–Marie–Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression. However, whether a similar efficacy may manifest in models of CMT1X arising from Cx32 mutations that cause the organellar accumulation of the protein was unclear. Additionally, it was unclear whether cemdomespib therapy slowed the rate of demyelination/NMJ degeneration or stabilized nerve and NMJ morphology to levels present at the initiation of drug therapy. To address these issues, 4-month-old R75W-Cx32 mice, which accumulate the mutant Cx32 in golgi, were treated for 0, 10, or 20 weeks with 0 or 3 mg/kg cemdomespib. Grip strength, motor nerve conduction velocity (MNCV), femoral nerve myelination, and NMJ morphology were quantified. Daily drug therapy significantly slowed the decline in grip strength over the course of treatment, while 20 weeks of drug treatment significantly improved MNCV and decreased the g-ratio and the number of thinly myelinated femoral nerve axons. Similarly, 20 weeks of cemdomespib therapy improved the NMJ morphology and the overlap between presynaptic (synaptophysin) and postsynaptic (α-bungarotoxin) markers. These data show that cemdomespib therapy slows the rate of neuromuscular decline and demyelination and may present a disease-modifying approach for patients with gain-of-function Cx32 mutations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信