Xuechan Bi, Min Li, Yiming Guo, Mengyao Hu, Yujie Chen, Ni Lian, Sihan Chen, Min Li, Heng Gu, Xu Chen
{"title":"ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury.","authors":"Xuechan Bi, Min Li, Yiming Guo, Mengyao Hu, Yujie Chen, Ni Lian, Sihan Chen, Min Li, Heng Gu, Xu Chen","doi":"10.1038/s41419-025-07351-3","DOIUrl":null,"url":null,"abstract":"<p><p>UVB irradiation induces diverse modalities of regulatory cell death in keratinocytes. Recently, the pattern of coexistence of pyroptosis, apoptosis, and necroptosis has been termed PANoptosis; however, whether PANoptosis occurs in keratinocytes in UVB-induced skin injury remains unclear. We observed that the key molecules of GSDMD-mediated pyroptosis, apoptosis, and necroptosis, which are N-terminal GSDMD, cleaved caspase-3/PARP, and phosphorylated MLKL, respectively, were elevated in keratinocytes of UVB-challenged mice and human skin tissue. Through keratinocyte-specific gene knockout or using corresponding inhibitors, we found that individual inhibition of GSDMD-mediated pyroptosis, caspase-3-mediated apoptosis, or MLKL-mediated necroptosis did not reduce the overall level of keratinocyte death after UVB exposure, and that the other two pathways maintained the activation. However, when the PANoptosome sensor ZBP1 was knocked out, keratinocyte death was reduced and epidermal thickening was alleviated in UVB-challenged mice. In conclusion, our study demonstrated that UVB irradiation induces ZBP1-mediated PANoptosis in keratinocytes, which is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. The above findings provide a new insight on the complexity of regulated cell death modalities in keratinocytes exposed to UV irradiation.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"44"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07351-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
UVB irradiation induces diverse modalities of regulatory cell death in keratinocytes. Recently, the pattern of coexistence of pyroptosis, apoptosis, and necroptosis has been termed PANoptosis; however, whether PANoptosis occurs in keratinocytes in UVB-induced skin injury remains unclear. We observed that the key molecules of GSDMD-mediated pyroptosis, apoptosis, and necroptosis, which are N-terminal GSDMD, cleaved caspase-3/PARP, and phosphorylated MLKL, respectively, were elevated in keratinocytes of UVB-challenged mice and human skin tissue. Through keratinocyte-specific gene knockout or using corresponding inhibitors, we found that individual inhibition of GSDMD-mediated pyroptosis, caspase-3-mediated apoptosis, or MLKL-mediated necroptosis did not reduce the overall level of keratinocyte death after UVB exposure, and that the other two pathways maintained the activation. However, when the PANoptosome sensor ZBP1 was knocked out, keratinocyte death was reduced and epidermal thickening was alleviated in UVB-challenged mice. In conclusion, our study demonstrated that UVB irradiation induces ZBP1-mediated PANoptosis in keratinocytes, which is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. The above findings provide a new insight on the complexity of regulated cell death modalities in keratinocytes exposed to UV irradiation.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism