MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway.

IF 8.1 1区 生物学 Q1 CELL BIOLOGY
Pei Huang, Guangli Yang, Pingping Zhang, Yin Zhu, Yaning Guan, Jian Sun, Qian Li, Yang An, Xiaoqi Shi, Juanjuan Zhao, Chaohong Liu, Zhixu He, Yan Chen, Zuochen Du
{"title":"MAPK4 inhibits the early aberrant activation of B cells in rheumatoid arthritis by promoting the IRF4-SHIP1 signaling pathway.","authors":"Pei Huang, Guangli Yang, Pingping Zhang, Yin Zhu, Yaning Guan, Jian Sun, Qian Li, Yang An, Xiaoqi Shi, Juanjuan Zhao, Chaohong Liu, Zhixu He, Yan Chen, Zuochen Du","doi":"10.1038/s41419-025-07352-2","DOIUrl":null,"url":null,"abstract":"<p><p>The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation. Using MAPK4 knockout (KO) mice, we demonstrated that MAPK4 intrinsically promotes the differentiation of marginal zone (MZ) B cells. Loss of MAPK4 in KO mice enhances proximal BCR signaling and activates the PI3K-AKT-mTOR pathway, leading to heightened B cell proliferation. Notably, B cells from MAPK4 KO mice produce significantly higher levels of IL-6, a key pro-inflammatory cytokine in RA. Furthermore, MAPK4 KO mice exhibit impaired T cell-independent humoral immune responses. Mechanistically, MAPK4 inhibits the activation of the PI3K signaling pathway in B cells by activating the IRF4-SHIP1 pathway. Treatment with the MAPK4 agonist Vacquinol-1 enhances MZ B cell differentiation in WT mice and reduces IL-6 secretion in CIA mouse models. In summary, this study reveals the diverse roles of MAPK4 in regulating of B cell functions, with potential implications for developing therapeutic strategies for RA and related autoimmune diseases.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"43"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763251/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07352-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The involvement of B lymphocytes in the pathogenesis of rheumatoid arthritis (RA) is well-established, with their early and aberrant activation being a crucial factor. However, the mechanisms underlying this abnormal activation in RA remain incompletely understood. In this study, we identified a significant reduction in MAPK4 expression in both RA patients and collagen-induced arthritis (CIA) mouse models, which correlates with disrupted B cell activation. Using MAPK4 knockout (KO) mice, we demonstrated that MAPK4 intrinsically promotes the differentiation of marginal zone (MZ) B cells. Loss of MAPK4 in KO mice enhances proximal BCR signaling and activates the PI3K-AKT-mTOR pathway, leading to heightened B cell proliferation. Notably, B cells from MAPK4 KO mice produce significantly higher levels of IL-6, a key pro-inflammatory cytokine in RA. Furthermore, MAPK4 KO mice exhibit impaired T cell-independent humoral immune responses. Mechanistically, MAPK4 inhibits the activation of the PI3K signaling pathway in B cells by activating the IRF4-SHIP1 pathway. Treatment with the MAPK4 agonist Vacquinol-1 enhances MZ B cell differentiation in WT mice and reduces IL-6 secretion in CIA mouse models. In summary, this study reveals the diverse roles of MAPK4 in regulating of B cell functions, with potential implications for developing therapeutic strategies for RA and related autoimmune diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death & Disease
Cell Death & Disease CELL BIOLOGY-
CiteScore
15.10
自引率
2.20%
发文量
935
审稿时长
2 months
期刊介绍: Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism. Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following: Experimental medicine Cancer Immunity Internal medicine Neuroscience Cancer metabolism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信