χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation

IF 3.5 2区 医学 Q1 NEUROIMAGING
Minjun Kim, Sooyeon Ji, Jiye Kim, Kyeongseon Min, Hwihun Jeong, Jonghyo Youn, Taechang Kim, Jinhee Jang, Berkin Bilgic, Hyeong-Geol Shin, Jongho Lee
{"title":"χ-sepnet: Deep Neural Network for Magnetic Susceptibility Source Separation","authors":"Minjun Kim,&nbsp;Sooyeon Ji,&nbsp;Jiye Kim,&nbsp;Kyeongseon Min,&nbsp;Hwihun Jeong,&nbsp;Jonghyo Youn,&nbsp;Taechang Kim,&nbsp;Jinhee Jang,&nbsp;Berkin Bilgic,&nbsp;Hyeong-Geol Shin,&nbsp;Jongho Lee","doi":"10.1002/hbm.70136","DOIUrl":null,"url":null,"abstract":"<p>Magnetic susceptibility source separation (<i>χ</i>-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation (<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>′</mo>\n </msubsup>\n <msubsup>\n <mrow>\n <mo>=</mo>\n <mi>R</mi>\n </mrow>\n <mn>2</mn>\n <mo>*</mo>\n </msubsup>\n <mo>−</mo>\n <msub>\n <mi>R</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {R}_2^{\\prime }={R}_2^{\\ast }-{R}_2 $$</annotation>\n </semantics></math>) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {R}_2 $$</annotation>\n </semantics></math> (e.g., multi-echo spin-echo) in addition to multi-echo GRE data for <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\ast } $$</annotation>\n </semantics></math>. To address these challenges, we develop a new deep learning network, <i>χ</i>-sepnet, and propose two deep learning-based susceptibility source separation pipelines, <i>χ</i>-sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\prime } $$</annotation>\n </semantics></math> for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and <i>χ-</i>sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\ast } $$</annotation>\n </semantics></math> for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality <i>χ</i>-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, <i>χ</i>-sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\prime } $$</annotation>\n </semantics></math> achieves the best outcomes followed by <i>χ-</i>sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\ast } $$</annotation>\n </semantics></math>, outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from <i>χ-</i>sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>′</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\prime } $$</annotation>\n </semantics></math> and <i>χ-</i>sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\ast } $$</annotation>\n </semantics></math> (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The <i>χ-</i>sepnet-<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>R</mi>\n <mn>2</mn>\n <mo>*</mo>\n </msubsup>\n </mrow>\n <annotation>$$ {R}_2^{\\ast } $$</annotation>\n </semantics></math> pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70136","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic susceptibility source separation (χ-separation), an advanced quantitative susceptibility mapping (QSM) method, enables the separate estimation of paramagnetic and diamagnetic susceptibility source distributions in the brain. Similar to QSM, it requires solving the ill-conditioned problem of dipole inversion, suffering from so-called streaking artifacts. Additionally, the method utilizes reversible transverse relaxation ( R 2 = R 2 * R 2 $$ {R}_2^{\prime }={R}_2^{\ast }-{R}_2 $$ ) to complement frequency shift information for estimating susceptibility source concentrations, requiring time-consuming data acquisition for R 2 $$ {R}_2 $$ (e.g., multi-echo spin-echo) in addition to multi-echo GRE data for R 2 * $$ {R}_2^{\ast } $$ . To address these challenges, we develop a new deep learning network, χ-sepnet, and propose two deep learning-based susceptibility source separation pipelines, χ-sepnet- R 2 $$ {R}_2^{\prime } $$ for inputs with multi-echo GRE and multi-echo spin-echo (or turbo spin-echo) and χ-sepnet- R 2 * $$ {R}_2^{\ast } $$ for input with multi-echo GRE only. The neural network is trained using multiple head orientation data that provide streaking artifact-free labels, generating high-quality χ-separation maps. The evaluation of the pipelines encompasses both qualitative and quantitative assessments in healthy subjects, and visual inspection of lesion characteristics in multiple sclerosis patients. The susceptibility source-separated maps of the proposed pipelines delineate detailed brain structures with substantially reduced artifacts compared to those from the conventional regularization-based reconstruction methods. In quantitative analysis, χ-sepnet- R 2 $$ {R}_2^{\prime } $$ achieves the best outcomes followed by χ-sepnet- R 2 * $$ {R}_2^{\ast } $$ , outperforming the conventional methods. When the lesions of multiple sclerosis patients are classified into subtypes, most lesions are identified as the same subtype in the maps from χ-sepnet- R 2 $$ {R}_2^{\prime } $$ and χ-sepnet- R 2 * $$ {R}_2^{\ast } $$ (paramagnetic susceptibility: 99.6% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet- R 2 * $$ {R}_2^{\ast } $$ pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.

Abstract Image

χ-sepnet:用于磁化率源分离的深度神经网络。
磁化率源分离(χ-分离法)是一种先进的定量磁化率图(QSM)方法,可以分别估计大脑中顺磁性和抗磁性磁化率源的分布。与QSM类似,它需要解决偶极子反转的病态问题,即所谓的条纹伪影。此外,该方法利用可逆横向弛豫(r2′= r2 * - r2 $$ {R}_2^{\prime }={R}_2^{\ast }-{R}_2 $$)来补充频移信息,用于估计磁化率源浓度,除了r2 * $$ {R}_2^{\ast } $$的多回波GRE数据外,还需要对r2 $$ {R}_2 $$(如多回波自旋回波)进行耗时的数据采集。为了解决这些挑战,我们开发了一种新的深度学习网络χ-sepnet,并提出了两个基于深度学习的敏感性源分离管道,χ-sepnet- r2 ' $$ {R}_2^{\prime } $$用于多回波GRE和多回波自旋回波(或turbo自旋回波)的输入,χ-sepnet- r2 * $$ {R}_2^{\ast } $$用于仅多回波GRE的输入。神经网络使用多个头部方向数据进行训练,这些数据提供无条纹伪影标签,生成高质量的χ-分离图。管道的评估包括健康受试者的定性和定量评估,以及多发性硬化症患者的病变特征的目视检查。与传统的基于正则化的重建方法相比,所提出的管道的敏感性源分离图描绘了详细的大脑结构,大大减少了人工影响。在定量分析中,χ-sepnet- r2′$$ {R}_2^{\prime } $$的结果最优,其次为χ-sepnet- r2 * $$ {R}_2^{\ast } $$,优于常规方法。在对多发性硬化症患者的病变进行分型时,从χ-sepnet- r2′$$ {R}_2^{\prime } $$和χ-sepnet- r2 * $$ {R}_2^{\ast } $$的图中,大多数病变被识别为同一亚型(顺磁化率为99.6)% and diamagnetic susceptibility: 98.4%; both out of 250 lesions). The χ-sepnet- R 2 * $$ {R}_2^{\ast } $$ pipeline, which only requires multi-echo GRE data, has demonstrated its potential to offer broad clinical and scientific applications, although further evaluations for various diseases and pathological conditions are necessary.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信