Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Shiyu Zong, Xiaolu Wen, Fuhou Lei, Liwei Zhu, Jianxin Jiang, Jiufang Duan
{"title":"Construction of environmentally stable self-adhesive conductive cellulose hydrogel for electronic skin sensor via autocatalytic fast polymerization strategy at room temperature.","authors":"Shiyu Zong, Xiaolu Wen, Fuhou Lei, Liwei Zhu, Jianxin Jiang, Jiufang Duan","doi":"10.1016/j.ijbiomac.2025.139999","DOIUrl":null,"url":null,"abstract":"<p><p>Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu<sup>2+</sup> in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system. The hydrogel obtained has excellent mechanical properties (strain >900 %, compressive strength >800 kPa, toughness >700 kJ/m<sup>3</sup>), reproducible adhesive properties (>10 times), excellent high and low temperature (-20-60 °C) adaptability and stability. And the excellent electrical conductivity endows the hydrogel with high strain sensitivity (GF = 5.15) over a wide strain range (400 %). The excellent overall performance ensures the stability and accuracy of the hydrogel as a flexible electronic skin for signal detection during human-computer interface interaction. This work contributes a new research strategy for the rational design and green development of biomass-based conductive hydrogel sensors.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"139999"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.139999","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bio-based conductive hydrogels are catching a widespread attention in the field of flexible sensors and human-machine interface interaction. Here, an enhanced autocatalytic system constructed from dopamine-encapsulated cellulose nanofibers (DA@CNF) and Cu2+ in a glycerol-water binary solvent achieved fast auto-polymerization of hydrogels within 60 s. X-ray photoelectron spectra (XPS), UV-vis spectrum (UV), Cyclic Voltammetry (CV) and electron paramagnetic resonance (EPR) were used to characterize the autocatalytic system. The hydrogel obtained has excellent mechanical properties (strain >900 %, compressive strength >800 kPa, toughness >700 kJ/m3), reproducible adhesive properties (>10 times), excellent high and low temperature (-20-60 °C) adaptability and stability. And the excellent electrical conductivity endows the hydrogel with high strain sensitivity (GF = 5.15) over a wide strain range (400 %). The excellent overall performance ensures the stability and accuracy of the hydrogel as a flexible electronic skin for signal detection during human-computer interface interaction. This work contributes a new research strategy for the rational design and green development of biomass-based conductive hydrogel sensors.

室温自催化快速聚合法制备电子皮肤传感器用环境稳定自粘导电纤维素水凝胶。
生物基导电水凝胶在柔性传感器和人机交互领域受到广泛关注。在这里,由多巴胺包封的纤维素纳米纤维(DA@CNF)和Cu2+在甘油-水二元溶剂中构建的增强自催化体系在60 s内实现了水凝胶的快速自聚合。采用x射线光电子能谱(XPS)、紫外可见光谱(UV)、循环伏安法(CV)和电子顺磁共振(EPR)对自催化体系进行了表征。所制得的水凝胶具有优异的力学性能(应变>900 %,抗压强度>800 kPa,韧性>700 kJ/m3),可重复性粘接性能(>10倍),优异的高低温(-20-60 °C)适应性和稳定性。优异的导电性使水凝胶在较宽的应变范围内具有较高的应变灵敏度(GF = 5.15)(400 %)。优异的综合性能保证了水凝胶作为柔性电子皮肤在人机界面交互过程中信号检测的稳定性和准确性。本工作为生物质导电水凝胶传感器的合理设计和绿色发展提供了新的研究策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信