Tuning d‐Band Center of FeCu Alloy Aerogel Nanozyme Boosting Biosensing and Wound Therapy

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fengyang Zhao, Wenli Wu, Mei Zhao, Shichao Ding, Li Yu, Qiongzheng Hu
{"title":"Tuning d‐Band Center of FeCu Alloy Aerogel Nanozyme Boosting Biosensing and Wound Therapy","authors":"Fengyang Zhao, Wenli Wu, Mei Zhao, Shichao Ding, Li Yu, Qiongzheng Hu","doi":"10.1002/adfm.202424433","DOIUrl":null,"url":null,"abstract":"Transition metals especially Fe‐based catalysts representing an emerging type of enzyme‐mimicking materials are of great interest in biosensing and therapy fields. However, the poor affinity toward H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> limits their catalytic activity while high‐precise and controllable regulation of engineering nanozymes remains a challenge. Herein, a facile approach is presented to fabricate FeCu/hemin aerogel nanozymes with self‐supported, hierarchically porous network structures through second metal center and surface ligand engineering, achieving sequential H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>‐affinity amplification. Excitingly, the affinity of FeCu/hemin nanozymes for H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> exhibits a 14.03‐fold enhancement than that of Fe particle, accompanied with 5.88‐fold catalytic efficiency (<jats:italic>K</jats:italic><jats:sub>cat</jats:sub>/<jats:italic>K</jats:italic><jats:sub>m</jats:sub>) increase than FeCu. Mechanism studies suggest that the metal Cu and hemin modifications upshift the <jats:italic>d</jats:italic>‐band center of Fe from −0.49 to −0.17 eV and promote electron transfer process, thus facilitating the dissociation of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub>. Importantly, FeCu/hemin nanozymes allow highly sensitive detection of norfloxacin with a low detection limit of 72 n<jats:sc>m</jats:sc>. Notably, it shows a remarkable inhibition activity on bacterial growth in vitro and in vivo with no apparent side effects. Therefore, this work not only sheds light on the rational design of nanozymes with highly active and stable properties, but also offers new prospects for the <jats:italic>d</jats:italic>‐band center tuning to boost enzyme‐mimic activity.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"49 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202424433","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metals especially Fe‐based catalysts representing an emerging type of enzyme‐mimicking materials are of great interest in biosensing and therapy fields. However, the poor affinity toward H2O2 limits their catalytic activity while high‐precise and controllable regulation of engineering nanozymes remains a challenge. Herein, a facile approach is presented to fabricate FeCu/hemin aerogel nanozymes with self‐supported, hierarchically porous network structures through second metal center and surface ligand engineering, achieving sequential H2O2‐affinity amplification. Excitingly, the affinity of FeCu/hemin nanozymes for H2O2 exhibits a 14.03‐fold enhancement than that of Fe particle, accompanied with 5.88‐fold catalytic efficiency (Kcat/Km) increase than FeCu. Mechanism studies suggest that the metal Cu and hemin modifications upshift the d‐band center of Fe from −0.49 to −0.17 eV and promote electron transfer process, thus facilitating the dissociation of H2O2. Importantly, FeCu/hemin nanozymes allow highly sensitive detection of norfloxacin with a low detection limit of 72 nm. Notably, it shows a remarkable inhibition activity on bacterial growth in vitro and in vivo with no apparent side effects. Therefore, this work not only sheds light on the rational design of nanozymes with highly active and stable properties, but also offers new prospects for the d‐band center tuning to boost enzyme‐mimic activity.
调节FeCu合金气凝胶纳米酶的d波段中心促进生物传感和伤口治疗
过渡金属特别是铁基催化剂是一种新兴的酶模拟材料,在生物传感和治疗领域引起了极大的兴趣。然而,对H2O2的亲和力差限制了它们的催化活性,而高精度和可控的工程纳米酶调控仍然是一个挑战。本文提出了一种简单的方法,通过第二金属中心和表面配体工程,制备具有自支撑、分层多孔网络结构的FeCu/hemin气凝胶纳米酶,实现H2O2 -亲和序列扩增。令人兴奋的是,FeCu/hemin纳米酶对H2O2的亲和力比Fe粒子提高了14.03倍,催化效率(Kcat/Km)比FeCu提高了5.88倍。机制研究表明,金属Cu和hemin修饰使Fe的d波段中心从−0.49 eV上升到−0.17 eV,促进了电子转移过程,从而促进了H2O2的解离。重要的是,FeCu/hemin纳米酶可以高度灵敏地检测诺氟沙星,检测限低至72 nm。值得注意的是,它在体外和体内都显示出显著的抑制细菌生长的活性,没有明显的副作用。因此,这项工作不仅为合理设计具有高活性和稳定性的纳米酶提供了思路,而且为提高酶模拟活性的d波段中心调谐提供了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信