Predictive analysis-based sustainable waste management in smart cities using IoT edge computing and blockchain technology

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
C. Anna Palagan, S. Sebastin Antony Joe, S.J. Jereesha Mary, E. Edwin Jijo
{"title":"Predictive analysis-based sustainable waste management in smart cities using IoT edge computing and blockchain technology","authors":"C. Anna Palagan, S. Sebastin Antony Joe, S.J. Jereesha Mary, E. Edwin Jijo","doi":"10.1016/j.compind.2024.104234","DOIUrl":null,"url":null,"abstract":"Effective waste management has become the key challenge in developing smart cities with the increase in population. Traditional waste management systems are often inefficient, which leads to unnecessary trips, high operational costs, difficulties in tracking waste, and the inefficient use of resources. The proposed work aims to integrate real-time predictive analysis-based waste collection and disposal processes using federated learning with blockchain, overcoming the challenges specified. Initially, IoT sensors were installed in waste bins across different sites to monitor the depth of waste accumulated. Local edge gateways preprocess the collected data, which the random forest model analyzes to determine the bin status. The aggregated data is sent to a global model that predicts overall waste generation trends. Furthermore, the processed data is securely recorded on a blockchain network combined with smart contracts, accessed through a decentralized application called D-App, which gives real-time updates for scheduling waste collection, performs efficient communication with users and stakeholders to access real-time data to monitor bin status, and track waste collection trucks. As a result, the model predicts bin status with 99.25 % accuracy using an RF algorithm and blockchain helped achieve a user trust level by 95 %. Thus, the proposed work reduces operational expenses, optimizes waste collection routes, makes better decisions, and provides a scalable solution for sustainable waste management.","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"77 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.compind.2024.104234","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Effective waste management has become the key challenge in developing smart cities with the increase in population. Traditional waste management systems are often inefficient, which leads to unnecessary trips, high operational costs, difficulties in tracking waste, and the inefficient use of resources. The proposed work aims to integrate real-time predictive analysis-based waste collection and disposal processes using federated learning with blockchain, overcoming the challenges specified. Initially, IoT sensors were installed in waste bins across different sites to monitor the depth of waste accumulated. Local edge gateways preprocess the collected data, which the random forest model analyzes to determine the bin status. The aggregated data is sent to a global model that predicts overall waste generation trends. Furthermore, the processed data is securely recorded on a blockchain network combined with smart contracts, accessed through a decentralized application called D-App, which gives real-time updates for scheduling waste collection, performs efficient communication with users and stakeholders to access real-time data to monitor bin status, and track waste collection trucks. As a result, the model predicts bin status with 99.25 % accuracy using an RF algorithm and blockchain helped achieve a user trust level by 95 %. Thus, the proposed work reduces operational expenses, optimizes waste collection routes, makes better decisions, and provides a scalable solution for sustainable waste management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in Industry
Computers in Industry 工程技术-计算机:跨学科应用
CiteScore
18.90
自引率
8.00%
发文量
152
审稿时长
22 days
期刊介绍: The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that: • Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry; • Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry; • Foster connections or integrations across diverse application areas of ICT in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信