Sevoflurane Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting the circ_CDR1as/miR-671-5p/HMGA1 Axis

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhengnan Zhang, Xi Yang, Baihe Feng, Haibin Huang
{"title":"Sevoflurane Alleviates Myocardial Ischemia/Reperfusion Injury by Targeting the circ_CDR1as/miR-671-5p/HMGA1 Axis","authors":"Zhengnan Zhang,&nbsp;Xi Yang,&nbsp;Baihe Feng,&nbsp;Haibin Huang","doi":"10.1002/jbt.70094","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Sevoflurane (Sev) has a cardioprotective role in myocardial ischemia/reperfusion injury (MI/RI), but its mechanism has not been fully elucidated. This study aimed to investigate whether the circ_CDR1as/miR-671-5p/HMGA1 axis mediates the cardioprotective effect of Sev in MI/RI. Cardiomyocytes underwent hypoxia/reoxygenation (H/R) treatment was used to simulate MI/RI in vitro. H/R cardiomyocytes were then pretreated with Sev to explore the protective effect of Sev on H/R cells. The level of CDR1as/miR-671-5p/HMGA1 axis were detected by RT-qPCR. The proliferation and apoptosis of cardiomyocytes were detected by CCK-8 and flow cytometry. The levels of myocardial injury markers and inflammatory markers were detected by ELISA assay. Finally, the regulatory relationship between CDR1as and miR-671-5p/HMGA1 axis was verified by Dual-luciferase reporting and RNA pull-down assays. Sev Pretreatment can reduce the level of CDR1as and mitigate H/R-induced damage to cardiomyocytes. This Pretreatment lowers the levels of myocardial injury markers, oxidative stress markers, and pro-inflammatory factors in H/R-affected cardiomyocytes. However, CDR1as overexpression inhibits Sev's protective effect on H/R cardiomyocytes. At the molecular mechanism, we found that CDR1as mediates Sev's protective effect through the CDR1as/miR-671-5p/HMGA1 axis. CDR1as increases HMGA1 levels by sponging miR-671-5p, while high HMGA1 levels diminish Sev's protective effect. Sev plays a cardioprotective role in MI/RI by inhibiting the circ_CDR1as/miR-671-5p/HMGA1 axis.</p>\n </div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70094","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sevoflurane (Sev) has a cardioprotective role in myocardial ischemia/reperfusion injury (MI/RI), but its mechanism has not been fully elucidated. This study aimed to investigate whether the circ_CDR1as/miR-671-5p/HMGA1 axis mediates the cardioprotective effect of Sev in MI/RI. Cardiomyocytes underwent hypoxia/reoxygenation (H/R) treatment was used to simulate MI/RI in vitro. H/R cardiomyocytes were then pretreated with Sev to explore the protective effect of Sev on H/R cells. The level of CDR1as/miR-671-5p/HMGA1 axis were detected by RT-qPCR. The proliferation and apoptosis of cardiomyocytes were detected by CCK-8 and flow cytometry. The levels of myocardial injury markers and inflammatory markers were detected by ELISA assay. Finally, the regulatory relationship between CDR1as and miR-671-5p/HMGA1 axis was verified by Dual-luciferase reporting and RNA pull-down assays. Sev Pretreatment can reduce the level of CDR1as and mitigate H/R-induced damage to cardiomyocytes. This Pretreatment lowers the levels of myocardial injury markers, oxidative stress markers, and pro-inflammatory factors in H/R-affected cardiomyocytes. However, CDR1as overexpression inhibits Sev's protective effect on H/R cardiomyocytes. At the molecular mechanism, we found that CDR1as mediates Sev's protective effect through the CDR1as/miR-671-5p/HMGA1 axis. CDR1as increases HMGA1 levels by sponging miR-671-5p, while high HMGA1 levels diminish Sev's protective effect. Sev plays a cardioprotective role in MI/RI by inhibiting the circ_CDR1as/miR-671-5p/HMGA1 axis.

七氟醚通过靶向circ_CDR1as/miR-671-5p/HMGA1轴减轻心肌缺血/再灌注损伤
七氟醚(Sev)在心肌缺血/再灌注损伤(MI/RI)中具有心脏保护作用,但其机制尚未完全阐明。本研究旨在探讨circ_CDR1as/miR-671-5p/HMGA1轴是否介导了Sev在MI/RI中的心脏保护作用。采用缺氧/再氧化(H/R)处理的心肌细胞体外模拟心肌梗死/心肌缺血再灌注。然后用Sev预处理H/R心肌细胞,探讨Sev对H/R细胞的保护作用。RT-qPCR检测CDR1as/miR-671-5p/HMGA1轴水平。采用CCK-8和流式细胞术检测心肌细胞的增殖和凋亡情况。采用ELISA法检测心肌损伤标志物和炎症标志物水平。最后,通过双荧光素酶报告和RNA下拉实验验证CDR1as与miR-671-5p/HMGA1轴之间的调控关系。预处理可降低CDR1as水平,减轻H/ r诱导的心肌细胞损伤。预处理降低了H/ r影响心肌细胞中心肌损伤标志物、氧化应激标志物和促炎因子的水平。然而,CDR1as过表达抑制了Sev对H/R心肌细胞的保护作用。在分子机制上,我们发现CDR1as通过CDR1as/miR-671-5p/HMGA1轴介导Sev的保护作用。CDR1as通过海绵作用miR-671-5p提高HMGA1水平,而高HMGA1水平会降低Sev的保护作用。Sev通过抑制circ_CDR1as/miR-671-5p/HMGA1轴在MI/RI中发挥心脏保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信