Junaid Khan, Matiullah Khan, Tanvi Sharma, Imed Boukhris, M. S. Al-Buriahi
{"title":"Advanced Computational Insights Into Cs₂NaScX₆ (X = Cl, Br) ₆ Double Perovskites: Structural Stability, Elastic Properties, and Optical Characteristics for Next-Generation Photovoltaics","authors":"Junaid Khan, Matiullah Khan, Tanvi Sharma, Imed Boukhris, M. S. Al-Buriahi","doi":"10.1002/jcc.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds. The computed optimized lattice parameters are Cs₂NaScX₆ (X = Cl, Br) are 10.72 Å and 12.01 Å, respectively. Employing a modified Becke–Johnson (mBJ) potential electronic nature shows that both compounds are in semiconductor nature, that is, 3.138 eV and 3.977 eV. The calculated elastic constant and perimeters show the Cs₂NaScX₆ (X = Cl, Br) are mechanical stables and also ductile and anisotropic nature. The optical properties described the range of photon energies from 0 to 10 eV, revealing pronounced absorption within the visible spectrum, highlighting their considerable promise for transformative innovations in photovoltaic technology. These double perovskites exhibit superior absorption characteristics compared to their Cs₂NaScX₆ (X = Cl, Br) analogues, thus laying the groundwork for significant advancements in solar energy conversion and photovoltaic applications.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70010","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the comprehensive analysis's structural, electronic, optical, and elastic properties of Cs₂NaScX₆ (X = Cl, Br) double perovskites using density functional theory (DFT) implemented by the WIEN2k code. The results show that both compounds are in cubic phases. The calculated tolerance factors show both are stable compounds. The computed optimized lattice parameters are Cs₂NaScX₆ (X = Cl, Br) are 10.72 Å and 12.01 Å, respectively. Employing a modified Becke–Johnson (mBJ) potential electronic nature shows that both compounds are in semiconductor nature, that is, 3.138 eV and 3.977 eV. The calculated elastic constant and perimeters show the Cs₂NaScX₆ (X = Cl, Br) are mechanical stables and also ductile and anisotropic nature. The optical properties described the range of photon energies from 0 to 10 eV, revealing pronounced absorption within the visible spectrum, highlighting their considerable promise for transformative innovations in photovoltaic technology. These double perovskites exhibit superior absorption characteristics compared to their Cs₂NaScX₆ (X = Cl, Br) analogues, thus laying the groundwork for significant advancements in solar energy conversion and photovoltaic applications.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.