Mason R Stothart, Sophia Lavergne, Laura McCaw, Hardeep Singh, Wilfred de Vega, Katherine Amato, Jocelyn Poissant, Rudy Boonstra
{"title":"Population Dynamics and the Microbiome in a Wild Boreal Mammal: The Snowshoe Hare Cycle and Impacts of Diet, Season and Predation Risk.","authors":"Mason R Stothart, Sophia Lavergne, Laura McCaw, Hardeep Singh, Wilfred de Vega, Katherine Amato, Jocelyn Poissant, Rudy Boonstra","doi":"10.1111/mec.17629","DOIUrl":null,"url":null,"abstract":"<p><p>The North American boreal forest is a massive ecosystem, and its keystone herbivore is the snowshoe hare (Lepus americanus). Hares are exposed to considerable environmental extremes in diet and weather, food availability, and predation risk. Gut microbiomes have been suggested to facilitate adaptive animal responses to environmental change, but severe environmental challenges to homeostasis can also disrupt host-microbiome relationships. To better understand gut microbiome contributions to animal acclimation, we studied the faecal bacterial microbiome of wild hares across two types of extreme environmental change that are integral to their natural history: (1) seasonal transitions between summer and winter, and (2) changes over the ~10 year 'boom-bust' population cycles that are characterised by shifting food resource availability and predation pressure. When compared to summer, hares in winter had lower bacterial richness and were depleted in 20 families (including Oxalobacteraceae and Christensenellaceae) but enriched for Ruminococcaceae (a family which contains plant fibre degrading bacteria) alongside nine other bacterial groups. Marked bacterial microbiome differences also occurred across phases of the population cycle. Bacterial microbiomes were lower in richness and compositionally distinct in the peak compared to the increase or decline phases of the population cycle. Direct measures of host physiology and diet quality (faecal fibre contents) most strongly supported food resource availability as a mechanism underlying phase-based differences in bacterial communities, but faecal fibre contents could not fully account for bacterial microbiome variation across phases.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17629"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17629","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The North American boreal forest is a massive ecosystem, and its keystone herbivore is the snowshoe hare (Lepus americanus). Hares are exposed to considerable environmental extremes in diet and weather, food availability, and predation risk. Gut microbiomes have been suggested to facilitate adaptive animal responses to environmental change, but severe environmental challenges to homeostasis can also disrupt host-microbiome relationships. To better understand gut microbiome contributions to animal acclimation, we studied the faecal bacterial microbiome of wild hares across two types of extreme environmental change that are integral to their natural history: (1) seasonal transitions between summer and winter, and (2) changes over the ~10 year 'boom-bust' population cycles that are characterised by shifting food resource availability and predation pressure. When compared to summer, hares in winter had lower bacterial richness and were depleted in 20 families (including Oxalobacteraceae and Christensenellaceae) but enriched for Ruminococcaceae (a family which contains plant fibre degrading bacteria) alongside nine other bacterial groups. Marked bacterial microbiome differences also occurred across phases of the population cycle. Bacterial microbiomes were lower in richness and compositionally distinct in the peak compared to the increase or decline phases of the population cycle. Direct measures of host physiology and diet quality (faecal fibre contents) most strongly supported food resource availability as a mechanism underlying phase-based differences in bacterial communities, but faecal fibre contents could not fully account for bacterial microbiome variation across phases.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms