Cascading Pathways Regulate the Biotransformations of Eight Fluorotelomer Acids Performed by Wastewater Microbial Communities

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Fanshu Geng, Damian E. Helbling
{"title":"Cascading Pathways Regulate the Biotransformations of Eight Fluorotelomer Acids Performed by Wastewater Microbial Communities","authors":"Fanshu Geng, Damian E. Helbling","doi":"10.1021/acs.est.4c09534","DOIUrl":null,"url":null,"abstract":"Polyfluoroalkyl substances can be biotransformed in natural or engineered environmental systems to generate perfluoroalkyl acids (PFAAs). Data are needed to support the development of biotransformation pathway prediction tools that simulate biotransformation pathways of polyfluoroalkyl substances in specific environmental systems. The goal of this study was to experimentally evaluate the biotransformation of eight structurally similar fluorotelomer acids to identify biotransformation products and propose biotransformation pathways. We selected six fluorotelomer carboxylic acids and two fluorotelomer sulfonic acids and employed a biotransformation test system in which batch reactors are seeded with aerobic wastewater microbial communities. We identified 111 biotransformation products among the eight parent compounds, 58 of which represent unique chemical structures. Many of the biotransformation products are the result of apparent dehydrogenation, monohydroxylation, alcohol oxidation, decarboxylation, HF-elimination, and reductive defluorination biotransformations. We use these data to propose cascading biotransformation pathways that are regulated by integrated and synergistic α-oxidation-like, β-oxidation-like, and defluorination biotransformations that result in the formation of terminal PFAAs of varying chain length. Our data provide a comprehensive view on the aerobic biotransformation of fluorotelomer acids and our results can be used to support the ongoing development of biotransformation pathway prediction tools.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"260 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09534","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polyfluoroalkyl substances can be biotransformed in natural or engineered environmental systems to generate perfluoroalkyl acids (PFAAs). Data are needed to support the development of biotransformation pathway prediction tools that simulate biotransformation pathways of polyfluoroalkyl substances in specific environmental systems. The goal of this study was to experimentally evaluate the biotransformation of eight structurally similar fluorotelomer acids to identify biotransformation products and propose biotransformation pathways. We selected six fluorotelomer carboxylic acids and two fluorotelomer sulfonic acids and employed a biotransformation test system in which batch reactors are seeded with aerobic wastewater microbial communities. We identified 111 biotransformation products among the eight parent compounds, 58 of which represent unique chemical structures. Many of the biotransformation products are the result of apparent dehydrogenation, monohydroxylation, alcohol oxidation, decarboxylation, HF-elimination, and reductive defluorination biotransformations. We use these data to propose cascading biotransformation pathways that are regulated by integrated and synergistic α-oxidation-like, β-oxidation-like, and defluorination biotransformations that result in the formation of terminal PFAAs of varying chain length. Our data provide a comprehensive view on the aerobic biotransformation of fluorotelomer acids and our results can be used to support the ongoing development of biotransformation pathway prediction tools.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信