{"title":"Electrochemical Active Ions Sensitive and Thermal Responses of Triboelectric Generators","authors":"Shatrudhan Palsaniya;Bheru Lal Jat;Ashok Kumar Dasmahapatra;Ram Chandra Palsaniya","doi":"10.1109/JFLEX.2024.3469888","DOIUrl":null,"url":null,"abstract":"This work shows paper-based triboelectric generator development (TEG) with multifunctional capabilities. Monitoring techniques unveil consistent responses. Conventional TEG generates an open-circuit voltage (\n<inline-formula> <tex-math>${V} _{\\mathrm {oc}}$ </tex-math></inline-formula>\n) of ~10 V and a short-circuit current (\n<inline-formula> <tex-math>${I} _{\\mathrm {sc}}$ </tex-math></inline-formula>\n) of \n<inline-formula> <tex-math>$\\sim 64.14~\\mu $ </tex-math></inline-formula>\n A. Electrochemical D-TEG achieves notable charge transfer and energy density (\n<inline-formula> <tex-math>${U} _{\\mathrm {e}}$ </tex-math></inline-formula>\n) of about \n<inline-formula> <tex-math>$3.88~\\mu $ </tex-math></inline-formula>\n J cm−2 at 0.1 M KCl. The ionic solid interface reduces internal resistance (\n<inline-formula> <tex-math>${R} _{\\mathrm {in}}$ </tex-math></inline-formula>\n), contributes consistent ionic conductivities (\n<inline-formula> <tex-math>$\\sigma _{\\mathrm {ac}}$ </tex-math></inline-formula>\n), and maximum \n<inline-formula> <tex-math>$\\sigma _{\\mathrm {ac}}$ </tex-math></inline-formula>\n is observed at 0.1 M KCl. Thermal agitated T-TEG shows improved performance with maximum \n<inline-formula> <tex-math>${V} _{\\mathrm {oc}}$ </tex-math></inline-formula>\n of ~1.23 V and \n<inline-formula> <tex-math>${I} _{\\mathrm {sc}}$ </tex-math></inline-formula>\n of \n<inline-formula> <tex-math>$\\sim 129~\\mu $ </tex-math></inline-formula>\n A at \n<inline-formula> <tex-math>$40~^{\\circ }$ </tex-math></inline-formula>\n C. Thermally directed Ag ink inscribed interdigitate structured (IDs) T-TEG exhibit improved \n<inline-formula> <tex-math>${I} _{\\mathrm {sc}}$ </tex-math></inline-formula>\n at temperature cycles. This study includes a detailed analysis of electron transfer mechanisms via energy band models in different environments, highlighting the solid ionic coupling effect on energy states and contact impedance. TEG can show potential in clinical diagnostic sensors, specifically ion recognition offering affordability and scalability.","PeriodicalId":100623,"journal":{"name":"IEEE Journal on Flexible Electronics","volume":"3 9","pages":"426-433"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Flexible Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10697217/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work shows paper-based triboelectric generator development (TEG) with multifunctional capabilities. Monitoring techniques unveil consistent responses. Conventional TEG generates an open-circuit voltage (
${V} _{\mathrm {oc}}$
) of ~10 V and a short-circuit current (
${I} _{\mathrm {sc}}$
) of
$\sim 64.14~\mu $
A. Electrochemical D-TEG achieves notable charge transfer and energy density (
${U} _{\mathrm {e}}$
) of about
$3.88~\mu $
J cm−2 at 0.1 M KCl. The ionic solid interface reduces internal resistance (
${R} _{\mathrm {in}}$
), contributes consistent ionic conductivities (
$\sigma _{\mathrm {ac}}$
), and maximum
$\sigma _{\mathrm {ac}}$
is observed at 0.1 M KCl. Thermal agitated T-TEG shows improved performance with maximum
${V} _{\mathrm {oc}}$
of ~1.23 V and
${I} _{\mathrm {sc}}$
of
$\sim 129~\mu $
A at
$40~^{\circ }$
C. Thermally directed Ag ink inscribed interdigitate structured (IDs) T-TEG exhibit improved
${I} _{\mathrm {sc}}$
at temperature cycles. This study includes a detailed analysis of electron transfer mechanisms via energy band models in different environments, highlighting the solid ionic coupling effect on energy states and contact impedance. TEG can show potential in clinical diagnostic sensors, specifically ion recognition offering affordability and scalability.