{"title":"Evaluation of plant-based coagulants for turbidity removal and coagulant dosage prediction using machine learning.","authors":"Poloko Ivy Namane, Moatlhodi Wise Letshwenyo, Abid Yahya","doi":"10.1080/09593330.2024.2439183","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the use of six plant-based coagulants - <i>Acacia erioloba</i>, <i>Ricinodendron rautanenii</i>, <i>Schinziophyton rautanenii</i>, <i>Peltophorum africanum</i>, <i>Delonix regia</i>, and <i>Maerua angolensis</i> for the removal of turbidity from wastewater effluent. The coagulants were characterized using Scanning Electron Microscopy (SEM) to determine morphological structure, X-ray fluorescence (XRF) to assess chemical composition, and X-ray diffraction to analyse the molecular structure. The coagulation process was evaluated using jar tests with varying coagulant dosages and pH levels. SEM images revealed irregular, rough surfaces, with all materials being amorphous and non-crystalline. Significant levels of essential elements, including iron (Fe), calcium (Ca), sulphur (S), and potassium (K) were revealed. Turbidity removal efficiency fluctuated with pH, showing optimal results under alkaline conditions. Notably, strong negative correlations between pH and turbidity were observed for all coagulants except <i>Peltophorum africanum</i> at a dosage of 20 g/L. Doubling the coagulant volume achieved turbidity reductions between 59% and 92.24%, except for <i>Acacia erioloba</i> and <i>Ricinodendron rautanenii</i> at a dosage of 40 g/L, which showed increased turbidity. The study also employed machine learning techniques to analyse the data and predict the most effective coagulant dosage under different pH conditions. These findings suggest that plant-based coagulants could be viable alternatives to chemical coagulants, with machine learning providing accurate predictions of coagulation performance. Further research is recommended to explore the capabilities of these natural coagulants fully.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"2570-2585"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2439183","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the use of six plant-based coagulants - Acacia erioloba, Ricinodendron rautanenii, Schinziophyton rautanenii, Peltophorum africanum, Delonix regia, and Maerua angolensis for the removal of turbidity from wastewater effluent. The coagulants were characterized using Scanning Electron Microscopy (SEM) to determine morphological structure, X-ray fluorescence (XRF) to assess chemical composition, and X-ray diffraction to analyse the molecular structure. The coagulation process was evaluated using jar tests with varying coagulant dosages and pH levels. SEM images revealed irregular, rough surfaces, with all materials being amorphous and non-crystalline. Significant levels of essential elements, including iron (Fe), calcium (Ca), sulphur (S), and potassium (K) were revealed. Turbidity removal efficiency fluctuated with pH, showing optimal results under alkaline conditions. Notably, strong negative correlations between pH and turbidity were observed for all coagulants except Peltophorum africanum at a dosage of 20 g/L. Doubling the coagulant volume achieved turbidity reductions between 59% and 92.24%, except for Acacia erioloba and Ricinodendron rautanenii at a dosage of 40 g/L, which showed increased turbidity. The study also employed machine learning techniques to analyse the data and predict the most effective coagulant dosage under different pH conditions. These findings suggest that plant-based coagulants could be viable alternatives to chemical coagulants, with machine learning providing accurate predictions of coagulation performance. Further research is recommended to explore the capabilities of these natural coagulants fully.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current