Strong electron–phonon coupling in magic-angle twisted bilayer graphene

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2024-12-11 DOI:10.1038/s41586-024-08227-w
Cheng Chen, Kevin P. Nuckolls, Shuhan Ding, Wangqian Miao, Dillon Wong, Myungchul Oh, Ryan L. Lee, Shanmei He, Cheng Peng, Ding Pei, Yiwei Li, Chenyue Hao, Haoran Yan, Hanbo Xiao, Han Gao, Qiao Li, Shihao Zhang, Jianpeng Liu, Lin He, Kenji Watanabe, Takashi Taniguchi, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Chu Li, Xu Han, Ding Pan, Zhongkai Liu, Xi Dai, Chaoxing Liu, B. Andrei Bernevig, Yao Wang, Ali Yazdani, Yulin Chen
{"title":"Strong electron–phonon coupling in magic-angle twisted bilayer graphene","authors":"Cheng Chen, Kevin P. Nuckolls, Shuhan Ding, Wangqian Miao, Dillon Wong, Myungchul Oh, Ryan L. Lee, Shanmei He, Cheng Peng, Ding Pei, Yiwei Li, Chenyue Hao, Haoran Yan, Hanbo Xiao, Han Gao, Qiao Li, Shihao Zhang, Jianpeng Liu, Lin He, Kenji Watanabe, Takashi Taniguchi, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Chu Li, Xu Han, Ding Pan, Zhongkai Liu, Xi Dai, Chaoxing Liu, B. Andrei Bernevig, Yao Wang, Ali Yazdani, Yulin Chen","doi":"10.1038/s41586-024-08227-w","DOIUrl":null,"url":null,"abstract":"<p>The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest<sup>1,2,3,4,5,6,7,8,9,10,11,12,13</sup>. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms<sup>14,15,16,17,18,19,20,21,22,23,24</sup>, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate<sup>11</sup>. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"25 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08227-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The unusual properties of superconductivity in magic-angle twisted bilayer graphene (MATBG) have sparked considerable research interest1,2,3,4,5,6,7,8,9,10,11,12,13. However, despite the dedication of intensive experimental efforts and the proposal of several possible pairing mechanisms14,15,16,17,18,19,20,21,22,23,24, the origin of its superconductivity remains elusive. Here, by utilizing angle-resolved photoemission spectroscopy with micrometre spatial resolution, we reveal flat-band replicas in superconducting MATBG, where MATBG is unaligned with its hexagonal boron nitride substrate11. These replicas show uniform energy spacing, approximately 150 ± 15 meV apart, indicative of strong electron–boson coupling. Strikingly, these replicas are absent in non-superconducting twisted bilayer graphene (TBG) systems, either when MATBG is aligned to hexagonal boron nitride or when TBG deviates from the magic angle. Calculations suggest that the formation of these flat-band replicas in superconducting MATBG are attributed to the strong coupling between flat-band electrons and an optical phonon mode at the graphene K point, facilitated by intervalley scattering. These findings, although they do not necessarily put electron–phonon coupling as the main driving force for the superconductivity in MATBG, unravel the electronic structure inherent in superconducting MATBG, thereby providing crucial information for understanding the unusual electronic landscape from which its superconductivity is derived.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信