Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics.

IF 4.7 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jose Gavalda-Garcia, Bhawna Dixit, Adrián Díaz, An Ghysels, Wim Vranken
{"title":"Gradations in protein dynamics captured by experimental NMR are not well represented by AlphaFold2 models and other computational metrics.","authors":"Jose Gavalda-Garcia, Bhawna Dixit, Adrián Díaz, An Ghysels, Wim Vranken","doi":"10.1016/j.jmb.2024.168900","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.</p>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":" ","pages":"168900"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jmb.2024.168900","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of accurate methods to predict the fold of proteins initiated by AlphaFold2 is rapidly changing our understanding of proteins and helping their design. However, these methods are mainly trained on protein structures determined with X-ray diffraction, where the protein is packed in crystals at often cryogenic temperatures. They can therefore only reliably cover well-folded parts of proteins that experience few, if any, conformational changes. Experimentally, solution nuclear magnetic resonance (NMR) is the experimental method of choice to gain insight into protein dynamics at near physiological conditions. Computationally, methods such as molecular dynamics (MD) simulations and Normal Mode Analysis (NMA) allow the estimation of a protein's intrinsic flexibility based on a single protein structure. This work addresses, on a large scale, the relationships for proteins between the AlphaFold2 pLDDT metric, the observed dynamics in solution from NMR metrics, interpreted MD simulations, and the computed dynamics with NMA from single AlphaFold2 models and NMR ensembles. We observe that these metrics agree well for rigid residues that adopt a single well-defined conformation, which are clearly distinct from residues that exhibit dynamic behavior and adopt multiple conformations. This direct order/disorder categorisation is reflected in the correlations observed between the parameters, but becomes very limited when considering only the likely dynamic residues. The gradations of dynamics observed by NMR in flexible protein regions are therefore not represented by these computational approaches. Our results are interactively available for each protein from https://bio2byte.be/af_nmr_nma/.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Biology
Journal of Molecular Biology 生物-生化与分子生物学
CiteScore
11.30
自引率
1.80%
发文量
412
审稿时长
28 days
期刊介绍: Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions. Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信