{"title":"Development of novel indicators and molecular systems for calcium sensing through protein engineering.","authors":"Alicia Climent-Catala, Mateo I Sanchez","doi":"10.1016/j.cbpa.2024.102547","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular calcium (Ca<sup>2+</sup>) is involved in a plethora of cell signalling processes and physiological functions. Increases in Ca<sup>2+</sup> concentration are bona fide biomarkers of neuronal activity, reflecting the spike count, timing, frequency, and the intensity of synaptic input. The development of genetically encoded calcium indicators (GECIs) was a significant advancement in modern neuroscience that enabled real-time visualisation of neuronal activity at single-cell resolution. These indicators leverage the conformational changes induced by calcium-binding proteins, such as calmodulin (CaM) or troponin C (TnC). Harnessing protein engineering approaches such as directed evolution yielded new GECIs with enhanced sensitivity, kinetics, and brightness. Notably, the development of calcium-based integrators, such as scFLARE (single-chain fast light- and activity-regulated expression), convert transient raises in cytosolic Ca<sup>2+</sup> into a transcriptional readout rather than an optical signal. This review summarises the latest efforts in protein engineering to develop new indicators and molecular systems to sense changes in Ca<sup>2+</sup> concentrations.</p>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"84 ","pages":"102547"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpa.2024.102547","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracellular calcium (Ca2+) is involved in a plethora of cell signalling processes and physiological functions. Increases in Ca2+ concentration are bona fide biomarkers of neuronal activity, reflecting the spike count, timing, frequency, and the intensity of synaptic input. The development of genetically encoded calcium indicators (GECIs) was a significant advancement in modern neuroscience that enabled real-time visualisation of neuronal activity at single-cell resolution. These indicators leverage the conformational changes induced by calcium-binding proteins, such as calmodulin (CaM) or troponin C (TnC). Harnessing protein engineering approaches such as directed evolution yielded new GECIs with enhanced sensitivity, kinetics, and brightness. Notably, the development of calcium-based integrators, such as scFLARE (single-chain fast light- and activity-regulated expression), convert transient raises in cytosolic Ca2+ into a transcriptional readout rather than an optical signal. This review summarises the latest efforts in protein engineering to develop new indicators and molecular systems to sense changes in Ca2+ concentrations.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.