Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal.

IF 4.6 2区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL
Gonzalo Martínez, Juan Diego Molero, Sandra González, Javier Conde, Marc Brysbaert, Pedro Reviriego
{"title":"Using large language models to estimate features of multi-word expressions: Concreteness, valence, arousal.","authors":"Gonzalo Martínez, Juan Diego Molero, Sandra González, Javier Conde, Marc Brysbaert, Pedro Reviriego","doi":"10.3758/s13428-024-02515-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential of large language models (LLMs) to provide accurate estimates of concreteness, valence, and arousal for multi-word expressions. Unlike previous artificial intelligence (AI) methods, LLMs can capture the nuanced meanings of multi-word expressions. We systematically evaluated GPT-4o's ability to predict concreteness, valence, and arousal. In Study 1, GPT-4o showed strong correlations with human concreteness ratings (r = .8) for multi-word expressions. In Study 2, these findings were repeated for valence and arousal ratings of individual words, matching or outperforming previous AI models. Studies 3-5 extended the valence and arousal analysis to multi-word expressions and showed good validity of the LLM-generated estimates for these stimuli as well. To help researchers with stimulus selection, we provide datasets with LLM-generated norms of concreteness, valence, and arousal for 126,397 English single words and 63,680 multi-word expressions.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 1","pages":"5"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02515-z","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of large language models (LLMs) to provide accurate estimates of concreteness, valence, and arousal for multi-word expressions. Unlike previous artificial intelligence (AI) methods, LLMs can capture the nuanced meanings of multi-word expressions. We systematically evaluated GPT-4o's ability to predict concreteness, valence, and arousal. In Study 1, GPT-4o showed strong correlations with human concreteness ratings (r = .8) for multi-word expressions. In Study 2, these findings were repeated for valence and arousal ratings of individual words, matching or outperforming previous AI models. Studies 3-5 extended the valence and arousal analysis to multi-word expressions and showed good validity of the LLM-generated estimates for these stimuli as well. To help researchers with stimulus selection, we provide datasets with LLM-generated norms of concreteness, valence, and arousal for 126,397 English single words and 63,680 multi-word expressions.

使用大型语言模型估计多词表达的特征:具体性、效价、唤起。
本研究探讨了大型语言模型(llm)的潜力,以提供对多词表达的具体、价态和唤醒的准确估计。与以前的人工智能(AI)方法不同,法学硕士可以捕捉多词表达的细微含义。我们系统地评估了gpt - 40预测具体性、效价和觉醒的能力。在研究1中,gpt - 40与人类多词表达的具体程度评分有很强的相关性(r = .8)。在研究2中,这些发现被重复用于单个单词的效价和唤醒评级,匹配或优于之前的人工智能模型。研究3-5将效价和唤醒分析扩展到多词表达,并显示llm生成的估计对这些刺激也具有良好的有效性。为了帮助研究人员进行刺激选择,我们提供了包含llm生成的126,397个英语单字和63,680个多字表达的具体、效价和唤醒规范的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.30%
发文量
266
期刊介绍: Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信