Tunable Q-factor Wavelet Transform-Based Features in the Classification of Phonation Types in the Singing and Speaking Voice.

IF 2.5 4区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Kiran Reddy Mittapalle, Paavo Alku
{"title":"Tunable Q-factor Wavelet Transform-Based Features in the Classification of Phonation Types in the Singing and Speaking Voice.","authors":"Kiran Reddy Mittapalle, Paavo Alku","doi":"10.1016/j.jvoice.2024.11.016","DOIUrl":null,"url":null,"abstract":"<p><p>Phonation is the use of the laryngeal system, with the help of an air-stream provided by the respiratory system, to generate audible sounds. Humans are capable of generating voices of various phonation types (eg, breathy, neutral, and pressed), and these types are used both in singing and speaking. In this study, we propose to use features derived using the tunable Q-factor wavelet transform (TQWT) for classification of phonation types in the singing and speaking voice. In the proposed approach, the input voice signal is first decomposed into sub-bands using TQWT, and then the Shannon wavelet entropy of each sub-band is calculated. A feed forward neural network classifier is trained using the entropy values to discriminate three phonation types (breathy, neutral, and pressed). The results show that the proposed TQWT-based features outperformed six state-of-the-art features in the classification of phonation types, both in the singing and speaking voice. Furthermore, the TQWT features achieved the highest phonation classification accuracies of 91% and 82% for the singing and speaking voice, respectively.</p>","PeriodicalId":49954,"journal":{"name":"Journal of Voice","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Voice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jvoice.2024.11.016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phonation is the use of the laryngeal system, with the help of an air-stream provided by the respiratory system, to generate audible sounds. Humans are capable of generating voices of various phonation types (eg, breathy, neutral, and pressed), and these types are used both in singing and speaking. In this study, we propose to use features derived using the tunable Q-factor wavelet transform (TQWT) for classification of phonation types in the singing and speaking voice. In the proposed approach, the input voice signal is first decomposed into sub-bands using TQWT, and then the Shannon wavelet entropy of each sub-band is calculated. A feed forward neural network classifier is trained using the entropy values to discriminate three phonation types (breathy, neutral, and pressed). The results show that the proposed TQWT-based features outperformed six state-of-the-art features in the classification of phonation types, both in the singing and speaking voice. Furthermore, the TQWT features achieved the highest phonation classification accuracies of 91% and 82% for the singing and speaking voice, respectively.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Voice
Journal of Voice 医学-耳鼻喉科学
CiteScore
4.00
自引率
13.60%
发文量
395
审稿时长
59 days
期刊介绍: The Journal of Voice is widely regarded as the world''s premiere journal for voice medicine and research. This peer-reviewed publication is listed in Index Medicus and is indexed by the Institute for Scientific Information. The journal contains articles written by experts throughout the world on all topics in voice sciences, voice medicine and surgery, and speech-language pathologists'' management of voice-related problems. The journal includes clinical articles, clinical research, and laboratory research. Members of the Foundation receive the journal as a benefit of membership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信