Study on the blast mitigation behavior of metakaolin-based foam geopolymer (MKFG) as tunnel cushioning layer against external blasts

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Wenxin Wang , Fangduo Xiao , Hang Zhou , Shikun Chen , Zhen Wang , Yi Liu , Dongming Yan
{"title":"Study on the blast mitigation behavior of metakaolin-based foam geopolymer (MKFG) as tunnel cushioning layer against external blasts","authors":"Wenxin Wang ,&nbsp;Fangduo Xiao ,&nbsp;Hang Zhou ,&nbsp;Shikun Chen ,&nbsp;Zhen Wang ,&nbsp;Yi Liu ,&nbsp;Dongming Yan","doi":"10.1016/j.tws.2024.112752","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the similarity model contact blast test and numerical simulations were carried out to investigate the protective behavior of tunnels with a metakaolin-based foam geopolymer (MKFG) cushioning layer under blast impacts. In contact blast test, Rock-Foam Geopolymer-Concrete Tunnel (RFGCT) structures with various densities (400, 600 and 800 kg/m<sup>3</sup>) of MKFG were tested against a blast impact of 100 g TNT. In numerical simulations, several parameters covering TNT equivalent as well as density and thickness of cushioning cladding, were comprehensively discussed. Test results show that the attenuation rate of cushioning cladding to the blast wave is enhanced from 34.7 % to 71.0 % with the reduction of the density of MKFG from 800 kg/m<sup>3</sup> to 400 kg/m<sup>3</sup>. Meanwhile, the reflected tensile wave generated by blast wave falls from 1.85 MPa to 0.66 MPa. When the density of MKFG exceeds 600 kg/m<sup>3</sup>, the cladding exists obvious defects in energy absorption at the bottom of mid-span and free end, which gradually disappear as the TNT equivalent and cushioning thickness increases. Increasing thickness of the MKFG-400 can lead to excessive overall displacement of the tunnel lining. Full-size uncertainty analysis shows that at TNT equivalents of 2000 kg, the thickness of MKFG-800 as cushion is recommended to be 2–3 times that of the lining.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"207 ","pages":"Article 112752"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124011923","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the similarity model contact blast test and numerical simulations were carried out to investigate the protective behavior of tunnels with a metakaolin-based foam geopolymer (MKFG) cushioning layer under blast impacts. In contact blast test, Rock-Foam Geopolymer-Concrete Tunnel (RFGCT) structures with various densities (400, 600 and 800 kg/m3) of MKFG were tested against a blast impact of 100 g TNT. In numerical simulations, several parameters covering TNT equivalent as well as density and thickness of cushioning cladding, were comprehensively discussed. Test results show that the attenuation rate of cushioning cladding to the blast wave is enhanced from 34.7 % to 71.0 % with the reduction of the density of MKFG from 800 kg/m3 to 400 kg/m3. Meanwhile, the reflected tensile wave generated by blast wave falls from 1.85 MPa to 0.66 MPa. When the density of MKFG exceeds 600 kg/m3, the cladding exists obvious defects in energy absorption at the bottom of mid-span and free end, which gradually disappear as the TNT equivalent and cushioning thickness increases. Increasing thickness of the MKFG-400 can lead to excessive overall displacement of the tunnel lining. Full-size uncertainty analysis shows that at TNT equivalents of 2000 kg, the thickness of MKFG-800 as cushion is recommended to be 2–3 times that of the lining.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信