REMOVAL OF BASIC YELLOW DYE MOLECULES WITH CHITOSAN-BASED MAGNETIC FIELD-SENSITIVE PARTICLES FROM THE AQUEOUS SOLUTION

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Ömer İPEK, Şeyda Taşar, Neslihan Duranay
{"title":"REMOVAL OF BASIC YELLOW DYE MOLECULES WITH CHITOSAN-BASED MAGNETIC FIELD-SENSITIVE PARTICLES FROM THE AQUEOUS SOLUTION","authors":"Ömer İPEK, Şeyda Taşar, Neslihan Duranay","doi":"10.1016/j.polymer.2024.127895","DOIUrl":null,"url":null,"abstract":"The study aimed to develop chitosan-based particle sorbents and evaluate their efficiency in removing reactive dyes from wastewater, leveraging chitosan’s hydrophilic and positively charged properties. Polymeric particles were synthesized using a precipitation-aggregation method and characterized via analytical techniques. Sorption performance was tested using Basic Yellow 28 (BY28) dye under varying conditions of temperature, pH, sorbent dosage, dye concentration, and contact time. Optimal conditions were identified as 40°C, pH 7, 0.2 g/L sorbent dosage, 75 mg/L dye concentration, and 180 minutes contact time, achieving a maximum sorption capacity of 330.96 mg/g. Experimental data were evaluated using isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich), with the Langmuir isotherm showing an R<sup>2</sup> value close to one (0.998), indicating a strong fit. The theoretical maximum sorption capacity (q<sub>max</sub>) ranging from 196.08 to 322.58 mg/g across different conditions. Kinetic studies revealed the pseudo-second-order model best described the sorption process, with maximum sorption capacities (q<sub>e,c</sub>) at different temperatures calculated at 243.90, 294.12, 312.50, and 333.33 mg/g at 25, 30, 35, and 40°C, respectively. The endothermic nature of adsorption indicates improved efficiency at higher temperatures, aligning with industrial requirements. The study highlights the versatility of chitosan particles across a wide range of pH and temperatures, combining chemical and physical adsorption mechanisms. These particles demonstrate stability, efficiency, and eco-friendliness, making them suitable for sustainable water treatment. The findings reinforce the applicability of chitosan in addressing textile wastewater challenges, offering insights into optimization and scalability for industrial effluent management. The robustness of chitosan particles further underscores their potential for broader applications in wastewater treatment.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"7 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127895","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to develop chitosan-based particle sorbents and evaluate their efficiency in removing reactive dyes from wastewater, leveraging chitosan’s hydrophilic and positively charged properties. Polymeric particles were synthesized using a precipitation-aggregation method and characterized via analytical techniques. Sorption performance was tested using Basic Yellow 28 (BY28) dye under varying conditions of temperature, pH, sorbent dosage, dye concentration, and contact time. Optimal conditions were identified as 40°C, pH 7, 0.2 g/L sorbent dosage, 75 mg/L dye concentration, and 180 minutes contact time, achieving a maximum sorption capacity of 330.96 mg/g. Experimental data were evaluated using isotherm models (Langmuir, Freundlich, Temkin, Dubinin-Radushkevich), with the Langmuir isotherm showing an R2 value close to one (0.998), indicating a strong fit. The theoretical maximum sorption capacity (qmax) ranging from 196.08 to 322.58 mg/g across different conditions. Kinetic studies revealed the pseudo-second-order model best described the sorption process, with maximum sorption capacities (qe,c) at different temperatures calculated at 243.90, 294.12, 312.50, and 333.33 mg/g at 25, 30, 35, and 40°C, respectively. The endothermic nature of adsorption indicates improved efficiency at higher temperatures, aligning with industrial requirements. The study highlights the versatility of chitosan particles across a wide range of pH and temperatures, combining chemical and physical adsorption mechanisms. These particles demonstrate stability, efficiency, and eco-friendliness, making them suitable for sustainable water treatment. The findings reinforce the applicability of chitosan in addressing textile wastewater challenges, offering insights into optimization and scalability for industrial effluent management. The robustness of chitosan particles further underscores their potential for broader applications in wastewater treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信