Single-Crystal Dynamic Covalent Organic Frameworks for Adaptive Guest Alignments

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shan Liu, Lei Wei, Tengwu Zeng, Wentao Jiang, Yu Qiu, Xuan Yao, Qisheng Wang, Yingbo Zhao, Yue-Biao Zhang
{"title":"Single-Crystal Dynamic Covalent Organic Frameworks for Adaptive Guest Alignments","authors":"Shan Liu, Lei Wei, Tengwu Zeng, Wentao Jiang, Yu Qiu, Xuan Yao, Qisheng Wang, Yingbo Zhao, Yue-Biao Zhang","doi":"10.1021/jacs.4c13377","DOIUrl":null,"url":null,"abstract":"Dynamic 3D covalent organic frameworks (COFs) have shown a concerted structural transformation upon adaptive guest inclusion. However, the origin of the conformational mobility and the host–guest adaptivity remain conjecture of the pedal motions of revolving imine linkages, often without considering the steric hindrance from the interwoven frameworks. Here, we present atomic-level observation of the rotational and translational dynamics in single-crystal COF-300 upon adaptive guest inclusion of various organic molecules, featuring multiple rotamers of covalent linkages and switchable interframework noncovalent interactions. Specifically, we developed a diffusion gradient transimination protocol to facilitate the growth of COF single crystals, enabling a high-resolution X-ray diffraction structural analysis. We uncovered metastable and low-symmetry intermediate phases from contracted to expanded phases during structural evolution. We identified torsion angles in the terephthalaldehyde diimine motifs that switch from <i>anti-periplanar</i> to <i>syn-periplanar</i>/<i>anticlinal</i> conformations. Moreover, the rotational dynamics of the imine linkage were concurrent with the translational dynamics of tetraphenylmethane units, which tend to form the translational quadruple phenyl embrace. Such conformational mobility allows the frameworks to adapt to various guest molecules, such as alcohols, esters, phenols, and diols, featuring double linear, herringbone, zigzag chains, triple helix, and tubular alignments. Quantitative energy analyses revealed that such dynamic structure transformations are not arbitrary but follow specific pathways that resemble protein folding. The work is paving the way to developing robust, dynamic, and crystalline molecular sponges for studying the condensed structure of liquids without the need for further crystallization.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"116 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13377","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic 3D covalent organic frameworks (COFs) have shown a concerted structural transformation upon adaptive guest inclusion. However, the origin of the conformational mobility and the host–guest adaptivity remain conjecture of the pedal motions of revolving imine linkages, often without considering the steric hindrance from the interwoven frameworks. Here, we present atomic-level observation of the rotational and translational dynamics in single-crystal COF-300 upon adaptive guest inclusion of various organic molecules, featuring multiple rotamers of covalent linkages and switchable interframework noncovalent interactions. Specifically, we developed a diffusion gradient transimination protocol to facilitate the growth of COF single crystals, enabling a high-resolution X-ray diffraction structural analysis. We uncovered metastable and low-symmetry intermediate phases from contracted to expanded phases during structural evolution. We identified torsion angles in the terephthalaldehyde diimine motifs that switch from anti-periplanar to syn-periplanar/anticlinal conformations. Moreover, the rotational dynamics of the imine linkage were concurrent with the translational dynamics of tetraphenylmethane units, which tend to form the translational quadruple phenyl embrace. Such conformational mobility allows the frameworks to adapt to various guest molecules, such as alcohols, esters, phenols, and diols, featuring double linear, herringbone, zigzag chains, triple helix, and tubular alignments. Quantitative energy analyses revealed that such dynamic structure transformations are not arbitrary but follow specific pathways that resemble protein folding. The work is paving the way to developing robust, dynamic, and crystalline molecular sponges for studying the condensed structure of liquids without the need for further crystallization.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信