{"title":"Tetracyanoanthracenediacenaphthalimides as n-Type Organic Semiconductors: Control of Molecular Orientation","authors":"Ying-Hsuan Liu, Pegah Ghamari, Meng Wei, Cory Ruchlin, Daling Cui, Federico Rosei, Dmytro F. Perepichka","doi":"10.1021/acs.chemmater.4c02653","DOIUrl":null,"url":null,"abstract":"We investigated tetracyanoanthracenediacenaphthalimides (TCDADIs) as n-type organic semiconductors (OSCs) and assessed their molecular self-assembly in forming monolayers and thin films using optical absorption spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), and grazing incidence wide-angle X-ray scattering (GIWAXS). The absorption spectra, along with quantitative GIWAXS analysis, reveal the influence of molecular structure (alkyl chain length) and film processing conditions (annealing temperature and spin-coating speed) on the orientation of TCDADI molecules in films. Our findings indicate that increasing the spin-coating speed and annealing temperatures causes a transition from a mixed phase to a predominantly edge-on molecular orientation. This transition significantly enhances the electron mobility, from 0.01 to 0.05 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for TCDADI-C16 and from 0.13 to 0.20 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> for TCDADI-C24. In addition, we highlight the potential of TCDADIs for photodetector applications, showing a photoresponse gain of over 2000 under white light.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"37 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02653","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated tetracyanoanthracenediacenaphthalimides (TCDADIs) as n-type organic semiconductors (OSCs) and assessed their molecular self-assembly in forming monolayers and thin films using optical absorption spectroscopy, scanning tunneling microscopy (STM), atomic force microscopy (AFM), and grazing incidence wide-angle X-ray scattering (GIWAXS). The absorption spectra, along with quantitative GIWAXS analysis, reveal the influence of molecular structure (alkyl chain length) and film processing conditions (annealing temperature and spin-coating speed) on the orientation of TCDADI molecules in films. Our findings indicate that increasing the spin-coating speed and annealing temperatures causes a transition from a mixed phase to a predominantly edge-on molecular orientation. This transition significantly enhances the electron mobility, from 0.01 to 0.05 cm2 V–1 s–1 for TCDADI-C16 and from 0.13 to 0.20 cm2 V–1 s–1 for TCDADI-C24. In addition, we highlight the potential of TCDADIs for photodetector applications, showing a photoresponse gain of over 2000 under white light.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.