Misbah Iqbal Hanif, Hamza Ahmed, Mohsina Noor Ibrahim, Syed Jamal Raza, Syed Ajaz Ahmed
{"title":"A NOVEL DE NOVO LIKELY PATHOGENIC VARIANT OF WFS-1 GENE IN A PAKISTANI CHILD WITH NON-CLASSIC WFS-1 SPECTRUM DISORDER.","authors":"Misbah Iqbal Hanif, Hamza Ahmed, Mohsina Noor Ibrahim, Syed Jamal Raza, Syed Ajaz Ahmed","doi":"10.55519/JAMC-02-12379","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Wolfram syndrome is a progressive neurodegenerative disorder caused by an alteration in the WFS-1 gene, located on chromosome 4p16.1 and is characterized by the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). WFS-1 gene encodes for a transmembrane protein termed Wolframin found in the membrane of the endoplasmic reticulum. Although Wolfram Syndrome is generally considered an autosomal recessive disorder, a milder non-classic autosomal dominant form has been reported in association with a single pathogenic or likely pathogenic variant in WFS-1 gene. Objective was to date more than 200 variants have been identified in the WFS-1 gene. This case report aims to highlight and explain a novel de-novo likely pathogenic variant of the WFS-1 gene in a Pakistani child, which is highly plausible to induce non-classic WFS-1 spectrum disorder (MedGen UID: 481988).</p><p><strong>Case discussion: </strong>Our patient, a seven-year-old boy, initially sought medical attention at our endocrine clinic for diabetic control. Besides diabetes, other notable features included short stature, sensorineural deafness and a history of bilateral cataracts. Family history was significant for parental consanguinity. A clinical diagnosis of Wolfram Syndrome was suspected and a multi gene panel test which included the WFS-1 gene was ordered. Initial report noted a variant of uncertain significance in the WFS-1 gene at c.2586G>T (p.Lys862Asn), which was later reclassified as a likely pathogenic variant by the laboratory based on the patient's clinical presentation.</p><p><strong>Conclusions: </strong>Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.</p>","PeriodicalId":517395,"journal":{"name":"Journal of Ayub Medical College, Abbottabad : JAMC","volume":"36 2","pages":"433-435"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ayub Medical College, Abbottabad : JAMC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55519/JAMC-02-12379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Wolfram syndrome is a progressive neurodegenerative disorder caused by an alteration in the WFS-1 gene, located on chromosome 4p16.1 and is characterized by the acronym DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness). WFS-1 gene encodes for a transmembrane protein termed Wolframin found in the membrane of the endoplasmic reticulum. Although Wolfram Syndrome is generally considered an autosomal recessive disorder, a milder non-classic autosomal dominant form has been reported in association with a single pathogenic or likely pathogenic variant in WFS-1 gene. Objective was to date more than 200 variants have been identified in the WFS-1 gene. This case report aims to highlight and explain a novel de-novo likely pathogenic variant of the WFS-1 gene in a Pakistani child, which is highly plausible to induce non-classic WFS-1 spectrum disorder (MedGen UID: 481988).
Case discussion: Our patient, a seven-year-old boy, initially sought medical attention at our endocrine clinic for diabetic control. Besides diabetes, other notable features included short stature, sensorineural deafness and a history of bilateral cataracts. Family history was significant for parental consanguinity. A clinical diagnosis of Wolfram Syndrome was suspected and a multi gene panel test which included the WFS-1 gene was ordered. Initial report noted a variant of uncertain significance in the WFS-1 gene at c.2586G>T (p.Lys862Asn), which was later reclassified as a likely pathogenic variant by the laboratory based on the patient's clinical presentation.
Conclusions: Access to genetic testing is not readily available in Pakistan and our population is under studied and these complex diagnoses are often missed. In this study, we present a novel de novo likely pathogenic variant in the WFS-1 gene that causes non-classic WFS-1 spectrum disorder in a child from our population.