Xixi Jin , Cuicui Wang , Zhaolong Sun , Yudong Lian , Quan Ji , Jinglong Tang , Xiaomei Ma
{"title":"Biocompatible dually reinforced gellan gum hydrogels with selective antibacterial activity","authors":"Xixi Jin , Cuicui Wang , Zhaolong Sun , Yudong Lian , Quan Ji , Jinglong Tang , Xiaomei Ma","doi":"10.1016/j.carbpol.2024.123071","DOIUrl":null,"url":null,"abstract":"<div><div>The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e., ionic-crosslinking along with rigid nano-particulate reinforcing, was realized to modify pristine GG hydrogels for the first time during the in-situ formation of zeolitic imidazolate framework-8 (ZIF-8). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, rheology and X-ray diffraction confirm the synchronous formation of ZIF-8 and ionic bonds between Zn<sup>2+</sup> and –COO<sup>−</sup> of GG molecules. The mechanics of the final hydrogels are far superior to GG hydrogel, with the maximum compressive and tensile strength attaining 1.17 MPa and 592.2 kPa, ~4 times and ~ 66 times respectively of the corresponding GG hydrogel. Especially, the obtained hydrogels display selective antibacterial activity against <em>Staphylococcus aureus</em> as a modeling Gram positive strain. Whereas, the hydrogels retain good biocompatibility despite the introduction of ZIF-8 and Zn<sup>2+</sup> crosslinks, with the cell viability (NIH3T3 cells as the model) >79 % after 48 h' cultivation in either the hydrogels or gel extracts. The excellent properties suggest them tremendous application prospects as biomedical materials, instrumental in averting drug-resistant problems.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"351 ","pages":"Article 123071"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724012979","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e., ionic-crosslinking along with rigid nano-particulate reinforcing, was realized to modify pristine GG hydrogels for the first time during the in-situ formation of zeolitic imidazolate framework-8 (ZIF-8). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, rheology and X-ray diffraction confirm the synchronous formation of ZIF-8 and ionic bonds between Zn2+ and –COO− of GG molecules. The mechanics of the final hydrogels are far superior to GG hydrogel, with the maximum compressive and tensile strength attaining 1.17 MPa and 592.2 kPa, ~4 times and ~ 66 times respectively of the corresponding GG hydrogel. Especially, the obtained hydrogels display selective antibacterial activity against Staphylococcus aureus as a modeling Gram positive strain. Whereas, the hydrogels retain good biocompatibility despite the introduction of ZIF-8 and Zn2+ crosslinks, with the cell viability (NIH3T3 cells as the model) >79 % after 48 h' cultivation in either the hydrogels or gel extracts. The excellent properties suggest them tremendous application prospects as biomedical materials, instrumental in averting drug-resistant problems.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.