Artificial rabbits optimization–based motion balance system for the impact recovery of a bipedal robot

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ping-Huan Kuo , Wei-Cyuan Yang , Yu-Sian Lin , Chao-Chung Peng
{"title":"Artificial rabbits optimization–based motion balance system for the impact recovery of a bipedal robot","authors":"Ping-Huan Kuo ,&nbsp;Wei-Cyuan Yang ,&nbsp;Yu-Sian Lin ,&nbsp;Chao-Chung Peng","doi":"10.1016/j.aei.2024.102965","DOIUrl":null,"url":null,"abstract":"<div><div>Research on the control of bipedal robots has predominantly focused on ensuring stability and balance during locomotion, often neglecting the robot’s ability to respond to unexpected external disturbances. In the present study, an algorithm is proposed to enable humanoid robots to maintain balance when they experience external impacts. In evaluation experiments, a robot was placed on flat surfaces and sloped terrain, where it experienced impacts from five angles. To evaluate the robot’s stability, data were collected before, during, and after each impact. The study utilized the artificial rabbits optimization (ARO) algorithm to optimize parameters and trained the robot’s control model by using a five-layer multilayer perceptron (MLP) neural network. Notably, the joint use of ARO and MLP yielded computational savings relative to conventional reinforcement learning methods. The proposed hybrid approach allowed the robot to adapt quickly to external forces and maintain balance effectively. The findings of this research hold considerable promise for enhancing the practical applications of bipedal robots in real-world scenarios, where unpredictable forces or impacts are common. By improving a robot’s ability to react dynamically and maintain balance, the proposed method enables humanoid robots to operate in highly challenging and dynamic environments, such as those associated with disaster response, industrial tasks, or everyday human interaction, without falling because of unexpected disturbances. Thus, the present study contributes to the field of humanoid robotics by addressing real-world challenges and providing a robust solution for impact resistance.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"63 ","pages":"Article 102965"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624006165","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Research on the control of bipedal robots has predominantly focused on ensuring stability and balance during locomotion, often neglecting the robot’s ability to respond to unexpected external disturbances. In the present study, an algorithm is proposed to enable humanoid robots to maintain balance when they experience external impacts. In evaluation experiments, a robot was placed on flat surfaces and sloped terrain, where it experienced impacts from five angles. To evaluate the robot’s stability, data were collected before, during, and after each impact. The study utilized the artificial rabbits optimization (ARO) algorithm to optimize parameters and trained the robot’s control model by using a five-layer multilayer perceptron (MLP) neural network. Notably, the joint use of ARO and MLP yielded computational savings relative to conventional reinforcement learning methods. The proposed hybrid approach allowed the robot to adapt quickly to external forces and maintain balance effectively. The findings of this research hold considerable promise for enhancing the practical applications of bipedal robots in real-world scenarios, where unpredictable forces or impacts are common. By improving a robot’s ability to react dynamically and maintain balance, the proposed method enables humanoid robots to operate in highly challenging and dynamic environments, such as those associated with disaster response, industrial tasks, or everyday human interaction, without falling because of unexpected disturbances. Thus, the present study contributes to the field of humanoid robotics by addressing real-world challenges and providing a robust solution for impact resistance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信