Fabrizio Rovaris, Anna Marzegalli, Francesco Montalenti, Emilio Scalise
{"title":"Unraveling the atomic-scale pathways driving pressure-induced phase transitions in silicon","authors":"Fabrizio Rovaris, Anna Marzegalli, Francesco Montalenti, Emilio Scalise","doi":"10.1016/j.mtnano.2024.100548","DOIUrl":null,"url":null,"abstract":"<div><div>Silicon exhibits several metastable allotropes which recently attracted attention in the quest for materials with superior (e.g. optical) properties, compatible with Si technology. In this work we shed light on the atomic-scale mechanisms leading to phase transformations in Si under pressure. To do so, we synergically exploit different state-of-the-art approaches. In particular, we use the advanced GAP interatomic potential both in NPT molecular dynamics simulations and in solid-state nudged elastic band calculations, validating our predictions with ab initio DFT calculations.</div><div>We provide a link between evidence reported in experimental nanoindentation literature and simulation results. Particular attention is dedicated to the investigation of atomistic transition paths allowing for the transformation between BC8/R8 phases to the <em>hd</em> one under pure annealing. In this case we show a direct simulation of the local nucleation of the hexagonal phase in a BC8/R8 matrix and its corresponding atomic-scale mechanism extracted by the use of SS-NEB. We extend our study investigating the effect of pressure on the nucleation barrier, providing an argument for explaining the heterogeneous nucleation of the <em>hd</em> phase and unraveling its main parameters with possible applications to the design of nanostructured materials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"29 ","pages":"Article 100548"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000981","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon exhibits several metastable allotropes which recently attracted attention in the quest for materials with superior (e.g. optical) properties, compatible with Si technology. In this work we shed light on the atomic-scale mechanisms leading to phase transformations in Si under pressure. To do so, we synergically exploit different state-of-the-art approaches. In particular, we use the advanced GAP interatomic potential both in NPT molecular dynamics simulations and in solid-state nudged elastic band calculations, validating our predictions with ab initio DFT calculations.
We provide a link between evidence reported in experimental nanoindentation literature and simulation results. Particular attention is dedicated to the investigation of atomistic transition paths allowing for the transformation between BC8/R8 phases to the hd one under pure annealing. In this case we show a direct simulation of the local nucleation of the hexagonal phase in a BC8/R8 matrix and its corresponding atomic-scale mechanism extracted by the use of SS-NEB. We extend our study investigating the effect of pressure on the nucleation barrier, providing an argument for explaining the heterogeneous nucleation of the hd phase and unraveling its main parameters with possible applications to the design of nanostructured materials.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites