One-Step Nanoimprinting of Fe2O3/AgBr Thin Films for Dark-Light Active Antibiofilm and Bacterial-Free Cell Culture Surfaces.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Anindita Thakur, Shivani Singh, Ramakrishnan Ganesan, Jayati Ray Dutta
{"title":"One-Step Nanoimprinting of Fe<sub>2</sub>O<sub>3</sub>/AgBr Thin Films for Dark-Light Active Antibiofilm and Bacterial-Free Cell Culture Surfaces.","authors":"Anindita Thakur, Shivani Singh, Ramakrishnan Ganesan, Jayati Ray Dutta","doi":"10.1002/smtd.202401574","DOIUrl":null,"url":null,"abstract":"<p><p>The resuscitation of bacteria through biofilms presents a critical challenge in controlling microbial pathogenesis and addressing antimicrobial resistance. Continuous antibiofilm activity, particularly on frequently contacted surfaces, is therefore critical. In this study, a scalable is introduced, one-step fabrication of Fe<sub>2</sub>O<sub>3</sub>/AgBr nanoimprints using a polymerizable sol-gel (PSG) approach to create functional nanostructured thin films with strong antimicrobial properties. Fe<sub>2</sub>O<sub>3</sub>, a visible-light photocatalyst, is coupled with AgBr, a photosensitizer and dark-active antimicrobial, forming a heterojunction that demonstrated potent antibacterial activity against Escherichia coli and Pseudomonas putida under both dark and light conditions. The heterojunctions exhibit significant biofilm inhibition in the dark, particularly against the robust biofilm-forming P. putida, while visible light irradiation ensures complete biofilm clearance. These surfaces also achieve optimal reactive oxygen species (ROS) production, selectively targeting bacteria without compromising the integrity of mammalian cells. The biocompatibility is confirmed through MTT, TBARS, and apoptosis assays, demonstrating the non-cytotoxic nature of the substrates. Moreover, the surfaces enable cell patterning and recovery of mammalian cells from microbial contamination, highlighting their potential in creating bacterial-free environments for cell culture. This innovative method offers a promising route to next-generation, self-cleaning antimicrobial coatings, combining continuous biofilm inhibition with excellent biocompatibility and scalability.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401574"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401574","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The resuscitation of bacteria through biofilms presents a critical challenge in controlling microbial pathogenesis and addressing antimicrobial resistance. Continuous antibiofilm activity, particularly on frequently contacted surfaces, is therefore critical. In this study, a scalable is introduced, one-step fabrication of Fe2O3/AgBr nanoimprints using a polymerizable sol-gel (PSG) approach to create functional nanostructured thin films with strong antimicrobial properties. Fe2O3, a visible-light photocatalyst, is coupled with AgBr, a photosensitizer and dark-active antimicrobial, forming a heterojunction that demonstrated potent antibacterial activity against Escherichia coli and Pseudomonas putida under both dark and light conditions. The heterojunctions exhibit significant biofilm inhibition in the dark, particularly against the robust biofilm-forming P. putida, while visible light irradiation ensures complete biofilm clearance. These surfaces also achieve optimal reactive oxygen species (ROS) production, selectively targeting bacteria without compromising the integrity of mammalian cells. The biocompatibility is confirmed through MTT, TBARS, and apoptosis assays, demonstrating the non-cytotoxic nature of the substrates. Moreover, the surfaces enable cell patterning and recovery of mammalian cells from microbial contamination, highlighting their potential in creating bacterial-free environments for cell culture. This innovative method offers a promising route to next-generation, self-cleaning antimicrobial coatings, combining continuous biofilm inhibition with excellent biocompatibility and scalability.

一步法纳米压印 Fe2O3/AgBr 薄膜,用于暗光活性抗生物膜和无菌细胞培养表面。
细菌通过生物膜复苏是控制微生物致病机理和解决抗菌药耐药性问题的关键挑战。因此,持续的抗生物膜活性至关重要,尤其是在经常接触的表面。本研究介绍了一种可扩展的方法,即利用可聚合溶胶-凝胶(PSG)方法一步制备 Fe2O3/AgBr 纳米压印,从而制造出具有强大抗菌性能的功能性纳米结构薄膜。可见光光催化剂 Fe2O3 与光敏剂和暗活性抗菌剂 AgBr 相结合,形成了一种异质结,在黑暗和光照条件下对大肠杆菌和绿脓杆菌都具有很强的抗菌活性。在黑暗条件下,异质结对生物膜有明显的抑制作用,尤其是对形成强大生物膜的假丝酵母菌,而在可见光照射下,则可确保完全清除生物膜。这些表面还能产生最佳活性氧 (ROS),有选择性地针对细菌,而不会损害哺乳动物细胞的完整性。生物相容性通过 MTT、TBARS 和细胞凋亡检测得到了证实,证明了基底的无毒性。此外,这些基底表面还能使细胞图案化,并使哺乳动物细胞免受微生物污染,从而凸显了它们在创造无细菌细胞培养环境方面的潜力。这种创新方法为下一代自清洁抗菌涂层提供了一条前景广阔的途径,它将持续的生物膜抑制作用与出色的生物相容性和可扩展性结合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信