Omar Alshangiti, Giulia Galatolo, Camilla Di Mino, Thomas F. Headen, Jacob Christianson, Simone Merotto, Gregory J. Rees, Yoan Delavoux, Małgorzata Swadźba-Kwaśny, Mauro Pasta
{"title":"Imidazolium-Based Ionic Liquid Electrolytes for Fluoride Ion Batteries","authors":"Omar Alshangiti, Giulia Galatolo, Camilla Di Mino, Thomas F. Headen, Jacob Christianson, Simone Merotto, Gregory J. Rees, Yoan Delavoux, Małgorzata Swadźba-Kwaśny, Mauro Pasta","doi":"10.1021/acsenergylett.4c02663","DOIUrl":null,"url":null,"abstract":"The fluoride-ion battery (FIB) is a post-lithium anionic battery that utilizes the fluoride-ion shuttle, achieving high theoretical energy densities of up to 1393 Wh L<sup>–1</sup> without relying on critical minerals. However, developing liquid electrolytes for FIBs has proven arduous due to the low solubility of fluoride salts and the chemical reactivity of the fluoride ion. By introducing a chemically stable electrolyte based on 1,3-dimethylimidazolium [MMIm] bis(trifluoromethanesulfonyl)imide [TFSI] and tetramethylammonium fluoride (TMAF), we achieve an electrochemical stability window (ESW) of 4.65 V, ionic conductivity of 9.53 mS cm<sup><i>–</i>1</sup>, and a solubility of 0.67 m. The origin of this high solubility and the solvation structure were investigated using NMR spectroscopy and neutron total scattering, showing a fluoride solvation driven by strong electrostatic interactions and weak hydrogen bonding without covalent H–F character. This indicates the chemical stability of 1,3-dimethylimidazolium toward the fluoride ion and its potential as an electrolyte for high-voltage FIBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"81 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02663","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The fluoride-ion battery (FIB) is a post-lithium anionic battery that utilizes the fluoride-ion shuttle, achieving high theoretical energy densities of up to 1393 Wh L–1 without relying on critical minerals. However, developing liquid electrolytes for FIBs has proven arduous due to the low solubility of fluoride salts and the chemical reactivity of the fluoride ion. By introducing a chemically stable electrolyte based on 1,3-dimethylimidazolium [MMIm] bis(trifluoromethanesulfonyl)imide [TFSI] and tetramethylammonium fluoride (TMAF), we achieve an electrochemical stability window (ESW) of 4.65 V, ionic conductivity of 9.53 mS cm–1, and a solubility of 0.67 m. The origin of this high solubility and the solvation structure were investigated using NMR spectroscopy and neutron total scattering, showing a fluoride solvation driven by strong electrostatic interactions and weak hydrogen bonding without covalent H–F character. This indicates the chemical stability of 1,3-dimethylimidazolium toward the fluoride ion and its potential as an electrolyte for high-voltage FIBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.