Maria Demeter, Ion Călina, Anca Scărișoreanu, Monica R Nemțanu, Mirela Brașoveanu, Marin Micutz, Marius Dumitru
{"title":"Formulation, E-Beam Crosslinking, and Comprehensive Characterisation of Lavender Oil-Enriched Hydrogels.","authors":"Maria Demeter, Ion Călina, Anca Scărișoreanu, Monica R Nemțanu, Mirela Brașoveanu, Marin Micutz, Marius Dumitru","doi":"10.3390/polym16223150","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on the formulation, electron beam (e-beam) crosslinking, and characterisation of hydrogels enriched with lavender oil (LO) to enhance their structural and functional properties for biomedical applications. Stable hydrogels were synthesised using water-soluble polymers and suitable ratios of Tween 80 and Isopropyl alcohol (IPA) as surfactant and co-surfactant, respectively, via e-beam irradiation at doses up to 70 kGy. The most effective crosslinking was achieved with a radiation dose of 30 kGy, depending on the concentrations of surfactants and LO. LO-enriched hydrogels exhibited enhanced superabsorbent swelling (7700% to 18,000%) and faster equilibrium rates than the control hydrogel. Structural analysis revealed a flexible spongiform porous architecture with larger mesh sizes (156 nm to 246 nm) and adequate elastic moduli (130 to 308 Pa). Degradation tests aligned with swelling data, demonstrating a degradation rate of 12% after 35 days, indicating an appropriate balance of stability and degradation. These findings suggest that e-beam technology, in conjunction with LO and surfactant addition, can effectively tailor hydrogel properties for biomedical applications, making them promising candidates for further research in wound care, drug delivery systems, and other biological applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 22","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16223150","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study focused on the formulation, electron beam (e-beam) crosslinking, and characterisation of hydrogels enriched with lavender oil (LO) to enhance their structural and functional properties for biomedical applications. Stable hydrogels were synthesised using water-soluble polymers and suitable ratios of Tween 80 and Isopropyl alcohol (IPA) as surfactant and co-surfactant, respectively, via e-beam irradiation at doses up to 70 kGy. The most effective crosslinking was achieved with a radiation dose of 30 kGy, depending on the concentrations of surfactants and LO. LO-enriched hydrogels exhibited enhanced superabsorbent swelling (7700% to 18,000%) and faster equilibrium rates than the control hydrogel. Structural analysis revealed a flexible spongiform porous architecture with larger mesh sizes (156 nm to 246 nm) and adequate elastic moduli (130 to 308 Pa). Degradation tests aligned with swelling data, demonstrating a degradation rate of 12% after 35 days, indicating an appropriate balance of stability and degradation. These findings suggest that e-beam technology, in conjunction with LO and surfactant addition, can effectively tailor hydrogel properties for biomedical applications, making them promising candidates for further research in wound care, drug delivery systems, and other biological applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.